Optimal. Leaf size=26 \[ e^{-\frac {2 e}{5}+\frac {-2-\frac {5}{x^3}+x}{5+x}}+x+\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 4.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {25 x^3+35 x^4+11 x^5+x^6+\exp \left (\frac {-25-10 x^3+5 x^4+e \left (-10 x^3-2 x^4\right )}{25 x^3+5 x^4}\right ) \left (75+20 x+7 x^4\right )}{25 x^4+10 x^5+x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 x^3+35 x^4+11 x^5+x^6+\exp \left (\frac {-25-10 x^3+5 x^4+e \left (-10 x^3-2 x^4\right )}{25 x^3+5 x^4}\right ) \left (75+20 x+7 x^4\right )}{x^4 \left (25+10 x+x^2\right )} \, dx\\ &=\int \frac {25 x^3+35 x^4+11 x^5+x^6+\exp \left (\frac {-25-10 x^3+5 x^4+e \left (-10 x^3-2 x^4\right )}{25 x^3+5 x^4}\right ) \left (75+20 x+7 x^4\right )}{x^4 (5+x)^2} \, dx\\ &=\int \left (\frac {35}{(5+x)^2}+\frac {25}{x (5+x)^2}+\frac {11 x}{(5+x)^2}+\frac {x^2}{(5+x)^2}+\frac {\exp \left (\frac {-25-10 (1+e) x^3+(5-2 e) x^4}{5 x^3 (5+x)}\right ) \left (75+20 x+7 x^4\right )}{x^4 (5+x)^2}\right ) \, dx\\ &=-\frac {35}{5+x}+11 \int \frac {x}{(5+x)^2} \, dx+25 \int \frac {1}{x (5+x)^2} \, dx+\int \frac {x^2}{(5+x)^2} \, dx+\int \frac {\exp \left (\frac {-25-10 (1+e) x^3+(5-2 e) x^4}{5 x^3 (5+x)}\right ) \left (75+20 x+7 x^4\right )}{x^4 (5+x)^2} \, dx\\ &=-\frac {35}{5+x}+11 \int \left (-\frac {5}{(5+x)^2}+\frac {1}{5+x}\right ) \, dx+25 \int \left (\frac {1}{25 x}-\frac {1}{5 (5+x)^2}-\frac {1}{25 (5+x)}\right ) \, dx+\int \left (\frac {3 \exp \left (\frac {-25-10 (1+e) x^3+(5-2 e) x^4}{5 x^3 (5+x)}\right )}{x^4}-\frac {2 \exp \left (\frac {-25-10 (1+e) x^3+(5-2 e) x^4}{5 x^3 (5+x)}\right )}{5 x^3}+\frac {\exp \left (\frac {-25-10 (1+e) x^3+(5-2 e) x^4}{5 x^3 (5+x)}\right )}{25 x^2}+\frac {174 \exp \left (\frac {-25-10 (1+e) x^3+(5-2 e) x^4}{5 x^3 (5+x)}\right )}{25 (5+x)^2}\right ) \, dx+\int \left (1+\frac {25}{(5+x)^2}-\frac {10}{5+x}\right ) \, dx\\ &=x+\log (x)+\frac {1}{25} \int \frac {\exp \left (\frac {-25-10 (1+e) x^3+(5-2 e) x^4}{5 x^3 (5+x)}\right )}{x^2} \, dx-\frac {2}{5} \int \frac {\exp \left (\frac {-25-10 (1+e) x^3+(5-2 e) x^4}{5 x^3 (5+x)}\right )}{x^3} \, dx+3 \int \frac {\exp \left (\frac {-25-10 (1+e) x^3+(5-2 e) x^4}{5 x^3 (5+x)}\right )}{x^4} \, dx+\frac {174}{25} \int \frac {\exp \left (\frac {-25-10 (1+e) x^3+(5-2 e) x^4}{5 x^3 (5+x)}\right )}{(5+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 37, normalized size = 1.42 \begin {gather*} e^{-\frac {25+10 (1+e) x^3+(-5+2 e) x^4}{5 x^3 (5+x)}}+x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 43, normalized size = 1.65 \begin {gather*} x + e^{\left (\frac {5 \, x^{4} - 10 \, x^{3} - 2 \, {\left (x^{4} + 5 \, x^{3}\right )} e - 25}{5 \, {\left (x^{4} + 5 \, x^{3}\right )}}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 86, normalized size = 3.31 \begin {gather*} x + e^{\left (-\frac {2 \, x^{4} e}{5 \, {\left (x^{4} + 5 \, x^{3}\right )}} + \frac {x^{4}}{x^{4} + 5 \, x^{3}} - \frac {2 \, x^{3} e}{x^{4} + 5 \, x^{3}} - \frac {2 \, x^{3}}{x^{4} + 5 \, x^{3}} - \frac {5}{x^{4} + 5 \, x^{3}}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 42, normalized size = 1.62
method | result | size |
risch | \(x +\ln \relax (x )+{\mathrm e}^{-\frac {2 x^{4} {\mathrm e}+10 x^{3} {\mathrm e}-5 x^{4}+10 x^{3}+25}{5 x^{3} \left (5+x \right )}}\) | \(42\) |
norman | \(\frac {x^{5}+x^{4} {\mathrm e}^{\frac {\left (-2 x^{4}-10 x^{3}\right ) {\mathrm e}+5 x^{4}-10 x^{3}-25}{5 x^{4}+25 x^{3}}}-25 x^{3}+5 x^{3} {\mathrm e}^{\frac {\left (-2 x^{4}-10 x^{3}\right ) {\mathrm e}+5 x^{4}-10 x^{3}-25}{5 x^{4}+25 x^{3}}}}{x^{3} \left (5+x \right )}+\ln \relax (x )\) | \(113\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.86, size = 33, normalized size = 1.27 \begin {gather*} x + e^{\left (-\frac {174}{25 \, {\left (x + 5\right )}} - \frac {1}{25 \, x} + \frac {1}{5 \, x^{2}} - \frac {1}{x^{3}} - \frac {2}{5} \, e + 1\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.91, size = 101, normalized size = 3.88 \begin {gather*} x+\ln \relax (x)+{\mathrm {e}}^{-\frac {2\,x^4\,\mathrm {e}}{5\,x^4+25\,x^3}}\,{\mathrm {e}}^{-\frac {10\,x^3\,\mathrm {e}}{5\,x^4+25\,x^3}}\,{\mathrm {e}}^{\frac {5\,x^4}{5\,x^4+25\,x^3}}\,{\mathrm {e}}^{-\frac {10\,x^3}{5\,x^4+25\,x^3}}\,{\mathrm {e}}^{-\frac {25}{5\,x^4+25\,x^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 42, normalized size = 1.62 \begin {gather*} x + e^{\frac {5 x^{4} - 10 x^{3} + e \left (- 2 x^{4} - 10 x^{3}\right ) - 25}{5 x^{4} + 25 x^{3}}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________