Optimal. Leaf size=24 \[ \left (x+\left (-\frac {2}{5}+\frac {1}{x}\right ) x \left (6+x-4 \left (4+e^5\right ) x\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 89, normalized size of antiderivative = 3.71, number of steps used = 4, number of rules used = 1, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {12} \begin {gather*} \frac {64 e^{10} x^4}{25}+\frac {96 e^5 x^4}{5}+36 x^4-\frac {64 e^{10} x^3}{5}-\frac {2512 e^5 x^3}{25}-\frac {984 x^3}{5}+16 e^{10} x^2+\frac {752 e^5 x^2}{5}+\frac {8524 x^2}{25}-48 e^5 x-\frac {984 x}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \left (-4920+17048 x-14760 x^2+3600 x^3+e^{10} \left (800 x-960 x^2+256 x^3\right )+e^5 \left (-1200+7520 x-7536 x^2+1920 x^3\right )\right ) \, dx\\ &=-\frac {984 x}{5}+\frac {8524 x^2}{25}-\frac {984 x^3}{5}+36 x^4+\frac {1}{25} e^5 \int \left (-1200+7520 x-7536 x^2+1920 x^3\right ) \, dx+\frac {1}{25} e^{10} \int \left (800 x-960 x^2+256 x^3\right ) \, dx\\ &=-\frac {984 x}{5}-48 e^5 x+\frac {8524 x^2}{25}+\frac {752 e^5 x^2}{5}+16 e^{10} x^2-\frac {984 x^3}{5}-\frac {2512 e^5 x^3}{25}-\frac {64 e^{10} x^3}{5}+36 x^4+\frac {96 e^5 x^4}{5}+\frac {64 e^{10} x^4}{25}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.01, size = 81, normalized size = 3.38 \begin {gather*} \frac {8}{25} \left (-615 x-150 e^5 x+\frac {2131 x^2}{2}+470 e^5 x^2+50 e^{10} x^2-615 x^3-314 e^5 x^3-40 e^{10} x^3+\frac {225 x^4}{2}+60 e^5 x^4+8 e^{10} x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 62, normalized size = 2.58 \begin {gather*} 36 \, x^{4} - \frac {984}{5} \, x^{3} + \frac {8524}{25} \, x^{2} + \frac {16}{25} \, {\left (4 \, x^{4} - 20 \, x^{3} + 25 \, x^{2}\right )} e^{10} + \frac {16}{25} \, {\left (30 \, x^{4} - 157 \, x^{3} + 235 \, x^{2} - 75 \, x\right )} e^{5} - \frac {984}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 62, normalized size = 2.58 \begin {gather*} 36 \, x^{4} - \frac {984}{5} \, x^{3} + \frac {8524}{25} \, x^{2} + \frac {16}{25} \, {\left (4 \, x^{4} - 20 \, x^{3} + 25 \, x^{2}\right )} e^{10} + \frac {16}{25} \, {\left (30 \, x^{4} - 157 \, x^{3} + 235 \, x^{2} - 75 \, x\right )} e^{5} - \frac {984}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.03, size = 58, normalized size = 2.42
method | result | size |
norman | \(\left (-48 \,{\mathrm e}^{5}-\frac {984}{5}\right ) x +\left (16 \,{\mathrm e}^{10}+\frac {752 \,{\mathrm e}^{5}}{5}+\frac {8524}{25}\right ) x^{2}+\left (-\frac {64 \,{\mathrm e}^{10}}{5}-\frac {2512 \,{\mathrm e}^{5}}{25}-\frac {984}{5}\right ) x^{3}+\left (\frac {64 \,{\mathrm e}^{10}}{25}+\frac {96 \,{\mathrm e}^{5}}{5}+36\right ) x^{4}\) | \(58\) |
default | \(\frac {{\mathrm e}^{10} \left (64 x^{4}-320 x^{3}+400 x^{2}\right )}{25}+\frac {{\mathrm e}^{5} \left (480 x^{4}-2512 x^{3}+3760 x^{2}-1200 x \right )}{25}+36 x^{4}-\frac {984 x^{3}}{5}+\frac {8524 x^{2}}{25}-\frac {984 x}{5}\) | \(65\) |
gosper | \(\frac {4 x \left (16 x^{3} {\mathrm e}^{10}-80 x^{2} {\mathrm e}^{10}+120 x^{3} {\mathrm e}^{5}+100 x \,{\mathrm e}^{10}-628 x^{2} {\mathrm e}^{5}+225 x^{3}+940 x \,{\mathrm e}^{5}-1230 x^{2}-300 \,{\mathrm e}^{5}+2131 x -1230\right )}{25}\) | \(67\) |
risch | \(\frac {64 x^{4} {\mathrm e}^{10}}{25}-\frac {64 x^{3} {\mathrm e}^{10}}{5}+16 x^{2} {\mathrm e}^{10}+\frac {96 x^{4} {\mathrm e}^{5}}{5}-\frac {2512 x^{3} {\mathrm e}^{5}}{25}+\frac {752 x^{2} {\mathrm e}^{5}}{5}-48 x \,{\mathrm e}^{5}+36 x^{4}-\frac {984 x^{3}}{5}+\frac {8524 x^{2}}{25}-\frac {984 x}{5}\) | \(67\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 62, normalized size = 2.58 \begin {gather*} 36 \, x^{4} - \frac {984}{5} \, x^{3} + \frac {8524}{25} \, x^{2} + \frac {16}{25} \, {\left (4 \, x^{4} - 20 \, x^{3} + 25 \, x^{2}\right )} e^{10} + \frac {16}{25} \, {\left (30 \, x^{4} - 157 \, x^{3} + 235 \, x^{2} - 75 \, x\right )} e^{5} - \frac {984}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 53, normalized size = 2.21 \begin {gather*} \left (\frac {96\,{\mathrm {e}}^5}{5}+\frac {64\,{\mathrm {e}}^{10}}{25}+36\right )\,x^4+\left (-\frac {2512\,{\mathrm {e}}^5}{25}-\frac {64\,{\mathrm {e}}^{10}}{5}-\frac {984}{5}\right )\,x^3+\left (\frac {752\,{\mathrm {e}}^5}{5}+16\,{\mathrm {e}}^{10}+\frac {8524}{25}\right )\,x^2+\left (-48\,{\mathrm {e}}^5-\frac {984}{5}\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.08, size = 70, normalized size = 2.92 \begin {gather*} x^{4} \left (36 + \frac {96 e^{5}}{5} + \frac {64 e^{10}}{25}\right ) + x^{3} \left (- \frac {64 e^{10}}{5} - \frac {2512 e^{5}}{25} - \frac {984}{5}\right ) + x^{2} \left (\frac {8524}{25} + \frac {752 e^{5}}{5} + 16 e^{10}\right ) + x \left (- 48 e^{5} - \frac {984}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________