Optimal. Leaf size=34 \[ x \left (x^2+x \left (x+\frac {3 \left (-x+\frac {5}{5+x}+x \log ^2(x)\right )}{5 x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 31, normalized size of antiderivative = 0.91, number of steps used = 15, number of rules used = 6, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {27, 12, 6742, 43, 2304, 2305} \begin {gather*} 2 x^3-\frac {3 x^2}{5}+\frac {3}{5} x^2 \log ^2(x)-\frac {15}{x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 43
Rule 2304
Rule 2305
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {75-150 x+690 x^2+294 x^3+30 x^4+\left (150 x+60 x^2+6 x^3\right ) \log (x)+\left (150 x+60 x^2+6 x^3\right ) \log ^2(x)}{5 (5+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {75-150 x+690 x^2+294 x^3+30 x^4+\left (150 x+60 x^2+6 x^3\right ) \log (x)+\left (150 x+60 x^2+6 x^3\right ) \log ^2(x)}{(5+x)^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {75}{(5+x)^2}-\frac {150 x}{(5+x)^2}+\frac {690 x^2}{(5+x)^2}+\frac {294 x^3}{(5+x)^2}+\frac {30 x^4}{(5+x)^2}+6 x \log (x)+6 x \log ^2(x)\right ) \, dx\\ &=-\frac {15}{5+x}+\frac {6}{5} \int x \log (x) \, dx+\frac {6}{5} \int x \log ^2(x) \, dx+6 \int \frac {x^4}{(5+x)^2} \, dx-30 \int \frac {x}{(5+x)^2} \, dx+\frac {294}{5} \int \frac {x^3}{(5+x)^2} \, dx+138 \int \frac {x^2}{(5+x)^2} \, dx\\ &=-\frac {3 x^2}{10}-\frac {15}{5+x}+\frac {3}{5} x^2 \log (x)+\frac {3}{5} x^2 \log ^2(x)-\frac {6}{5} \int x \log (x) \, dx+6 \int \left (75-10 x+x^2+\frac {625}{(5+x)^2}-\frac {500}{5+x}\right ) \, dx-30 \int \left (-\frac {5}{(5+x)^2}+\frac {1}{5+x}\right ) \, dx+\frac {294}{5} \int \left (-10+x-\frac {125}{(5+x)^2}+\frac {75}{5+x}\right ) \, dx+138 \int \left (1+\frac {25}{(5+x)^2}-\frac {10}{5+x}\right ) \, dx\\ &=-\frac {3 x^2}{5}+2 x^3-\frac {15}{5+x}+\frac {3}{5} x^2 \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 32, normalized size = 0.94 \begin {gather*} \frac {3}{5} \left (-x^2+\frac {10 x^3}{3}-\frac {25}{5+x}+x^2 \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 39, normalized size = 1.15 \begin {gather*} \frac {10 \, x^{4} + 47 \, x^{3} + 3 \, {\left (x^{3} + 5 \, x^{2}\right )} \log \relax (x)^{2} - 15 \, x^{2} - 75}{5 \, {\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 27, normalized size = 0.79 \begin {gather*} \frac {3}{5} \, x^{2} \log \relax (x)^{2} + 2 \, x^{3} - \frac {3}{5} \, x^{2} - \frac {15}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.53, size = 28, normalized size = 0.82
method | result | size |
default | \(\frac {3 x^{2} \ln \relax (x )^{2}}{5}+2 x^{3}-\frac {3 x^{2}}{5}-\frac {15}{5+x}\) | \(28\) |
risch | \(\frac {3 x^{2} \ln \relax (x )^{2}}{5}+\frac {10 x^{4}+47 x^{3}-15 x^{2}-75}{25+5 x}\) | \(35\) |
norman | \(\frac {-3 x^{2}+\frac {47 x^{3}}{5}+2 x^{4}+3 x^{2} \ln \relax (x )^{2}+\frac {3 x^{3} \ln \relax (x )^{2}}{5}-15}{5+x}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 27, normalized size = 0.79 \begin {gather*} \frac {3}{5} \, x^{2} \log \relax (x)^{2} + 2 \, x^{3} - \frac {3}{5} \, x^{2} - \frac {15}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.87, size = 32, normalized size = 0.94 \begin {gather*} x^2\,\left (\frac {3\,{\ln \relax (x)}^2}{5}-\frac {3}{5}\right )-\frac {75\,x}{5\,x^2+25\,x}+2\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 27, normalized size = 0.79 \begin {gather*} 2 x^{3} + \frac {3 x^{2} \log {\relax (x )}^{2}}{5} - \frac {3 x^{2}}{5} - \frac {15}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________