Optimal. Leaf size=29 \[ \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x \left (x-x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {x}{4+2 x+2 \log \left (x^2\right )}} \left (-16+8 x+20 x^2+6 x^3+\left (-16+17 x+11 x^2\right ) \log \left (x^2\right )+(-4+6 x) \log ^2\left (x^2\right )\right )}{8 x^3-8 x^4-6 x^5+4 x^6+2 x^7+\left (8 x^3-12 x^4+4 x^6\right ) \log \left (x^2\right )+\left (2 x^3-4 x^4+2 x^5\right ) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}} \left (2 (2+x)^2 (-2+3 x)+\left (-16+17 x+11 x^2\right ) \log \left (x^2\right )+(-4+6 x) \log ^2\left (x^2\right )\right )}{2 (1-x)^2 x^3 \left (2+x+\log \left (x^2\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}} \left (2 (2+x)^2 (-2+3 x)+\left (-16+17 x+11 x^2\right ) \log \left (x^2\right )+(-4+6 x) \log ^2\left (x^2\right )\right )}{(1-x)^2 x^3 \left (2+x+\log \left (x^2\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {2 e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}} (-2+3 x)}{(-1+x)^2 x^3}+\frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}} (2+x)}{(-1+x) x^2 \left (2+x+\log \left (x^2\right )\right )^2}-\frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{(-1+x) x^2 \left (2+x+\log \left (x^2\right )\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}} (2+x)}{(-1+x) x^2 \left (2+x+\log \left (x^2\right )\right )^2} \, dx-\frac {1}{2} \int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{(-1+x) x^2 \left (2+x+\log \left (x^2\right )\right )} \, dx+\int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}} (-2+3 x)}{(-1+x)^2 x^3} \, dx\\ &=\frac {1}{2} \int \left (\frac {3 e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{(-1+x) \left (2+x+\log \left (x^2\right )\right )^2}-\frac {2 e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x^2 \left (2+x+\log \left (x^2\right )\right )^2}-\frac {3 e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x \left (2+x+\log \left (x^2\right )\right )^2}\right ) \, dx-\frac {1}{2} \int \left (\frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{(-1+x) \left (2+x+\log \left (x^2\right )\right )}-\frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x^2 \left (2+x+\log \left (x^2\right )\right )}-\frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x \left (2+x+\log \left (x^2\right )\right )}\right ) \, dx+\int \left (\frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{(-1+x)^2}-\frac {2 e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x^3}-\frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{(-1+x) \left (2+x+\log \left (x^2\right )\right )} \, dx\right )+\frac {1}{2} \int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x^2 \left (2+x+\log \left (x^2\right )\right )} \, dx+\frac {1}{2} \int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x \left (2+x+\log \left (x^2\right )\right )} \, dx+\frac {3}{2} \int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{(-1+x) \left (2+x+\log \left (x^2\right )\right )^2} \, dx-\frac {3}{2} \int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x \left (2+x+\log \left (x^2\right )\right )^2} \, dx-2 \int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x^3} \, dx+\int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{(-1+x)^2} \, dx-\int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x^2} \, dx-\int \frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{x^2 \left (2+x+\log \left (x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 26, normalized size = 0.90 \begin {gather*} -\frac {e^{\frac {x}{2 \left (2+x+\log \left (x^2\right )\right )}}}{(-1+x) x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 26, normalized size = 0.90 \begin {gather*} -\frac {e^{\left (\frac {x}{2 \, {\left (x + \log \left (x^{2}\right ) + 2\right )}}\right )}}{x^{3} - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.59, size = 26, normalized size = 0.90 \begin {gather*} -\frac {e^{\left (\frac {x}{2 \, {\left (x + \log \left (x^{2}\right ) + 2\right )}}\right )}}{x^{3} - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 24, normalized size = 0.83
method | result | size |
risch | \(-\frac {{\mathrm e}^{\frac {x}{2 \ln \left (x^{2}\right )+2 x +4}}}{x^{2} \left (x -1\right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.96, size = 26, normalized size = 0.90 \begin {gather*} \frac {{\mathrm {e}}^{\frac {x}{2\,x+\ln \left (x^4\right )+4}}}{x^2-x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 22, normalized size = 0.76 \begin {gather*} - \frac {e^{\frac {x}{2 x + 2 \log {\left (x^{2} \right )} + 4}}}{x^{3} - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________