Optimal. Leaf size=19 \[ \frac {2}{3} x \left (-1-e^x+\frac {x^2}{4}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 30, normalized size of antiderivative = 1.58, number of steps used = 4, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {12, 2176, 2194} \begin {gather*} \frac {x^3}{6}-\frac {2 x}{3}+\frac {2 e^x}{3}-\frac {2}{3} e^x (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{6} \int \left (-4+e^x (-4-4 x)+3 x^2\right ) \, dx\\ &=-\frac {2 x}{3}+\frac {x^3}{6}+\frac {1}{6} \int e^x (-4-4 x) \, dx\\ &=-\frac {2 x}{3}+\frac {x^3}{6}-\frac {2}{3} e^x (1+x)+\frac {2 \int e^x \, dx}{3}\\ &=\frac {2 e^x}{3}-\frac {2 x}{3}+\frac {x^3}{6}-\frac {2}{3} e^x (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 0.89 \begin {gather*} \frac {1}{6} \left (-4 x-4 e^x x+x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 14, normalized size = 0.74 \begin {gather*} \frac {1}{6} \, x^{3} - \frac {2}{3} \, x e^{x} - \frac {2}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 14, normalized size = 0.74 \begin {gather*} \frac {1}{6} \, x^{3} - \frac {2}{3} \, x e^{x} - \frac {2}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.79
method | result | size |
default | \(-\frac {2 x}{3}+\frac {x^{3}}{6}-\frac {2 \,{\mathrm e}^{x} x}{3}\) | \(15\) |
norman | \(-\frac {2 x}{3}+\frac {x^{3}}{6}-\frac {2 \,{\mathrm e}^{x} x}{3}\) | \(15\) |
risch | \(-\frac {2 x}{3}+\frac {x^{3}}{6}-\frac {2 \,{\mathrm e}^{x} x}{3}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 14, normalized size = 0.74 \begin {gather*} \frac {1}{6} \, x^{3} - \frac {2}{3} \, x e^{x} - \frac {2}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 14, normalized size = 0.74 \begin {gather*} -\frac {x\,\left (4\,{\mathrm {e}}^x-x^2+4\right )}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 17, normalized size = 0.89 \begin {gather*} \frac {x^{3}}{6} - \frac {2 x e^{x}}{3} - \frac {2 x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________