Optimal. Leaf size=18 \[ x+\frac {4 x (2+x)}{45 (-3-\log (x))^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.33, antiderivative size = 55, normalized size of antiderivative = 3.06, number of steps used = 26, number of rules used = 9, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.196, Rules used = {6688, 12, 6742, 2320, 2330, 2299, 2178, 2309, 2297} \begin {gather*} x-\frac {8 (x+1) x}{45 (\log (x)+3)}+\frac {8 (x+2) x}{45 (\log (x)+3)}-\frac {8 x}{45 (\log (x)+3)}+\frac {4 (x+2) x}{45 (\log (x)+3)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2297
Rule 2299
Rule 2309
Rule 2320
Rule 2330
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1223+16 x+(1223+8 x) \log (x)+405 \log ^2(x)+45 \log ^3(x)}{45 (3+\log (x))^3} \, dx\\ &=\frac {1}{45} \int \frac {1223+16 x+(1223+8 x) \log (x)+405 \log ^2(x)+45 \log ^3(x)}{(3+\log (x))^3} \, dx\\ &=\frac {1}{45} \int \left (45-\frac {8 (2+x)}{(3+\log (x))^3}+\frac {8 (1+x)}{(3+\log (x))^2}\right ) \, dx\\ &=x-\frac {8}{45} \int \frac {2+x}{(3+\log (x))^3} \, dx+\frac {8}{45} \int \frac {1+x}{(3+\log (x))^2} \, dx\\ &=x+\frac {4 x (2+x)}{45 (3+\log (x))^2}-\frac {8 x (1+x)}{45 (3+\log (x))}+\frac {8}{45} \int \frac {1}{(3+\log (x))^2} \, dx-\frac {8}{45} \int \frac {2+x}{(3+\log (x))^2} \, dx-\frac {8}{45} \int \frac {1}{3+\log (x)} \, dx+\frac {16}{45} \int \frac {1+x}{3+\log (x)} \, dx\\ &=x+\frac {4 x (2+x)}{45 (3+\log (x))^2}-\frac {8 x}{45 (3+\log (x))}-\frac {8 x (1+x)}{45 (3+\log (x))}+\frac {8 x (2+x)}{45 (3+\log (x))}+\frac {8}{45} \int \frac {1}{3+\log (x)} \, dx-\frac {8}{45} \operatorname {Subst}\left (\int \frac {e^x}{3+x} \, dx,x,\log (x)\right )+\frac {16}{45} \int \frac {1}{3+\log (x)} \, dx-\frac {16}{45} \int \frac {2+x}{3+\log (x)} \, dx+\frac {16}{45} \int \left (\frac {1}{3+\log (x)}+\frac {x}{3+\log (x)}\right ) \, dx\\ &=x-\frac {8 \text {Ei}(3+\log (x))}{45 e^3}+\frac {4 x (2+x)}{45 (3+\log (x))^2}-\frac {8 x}{45 (3+\log (x))}-\frac {8 x (1+x)}{45 (3+\log (x))}+\frac {8 x (2+x)}{45 (3+\log (x))}+\frac {8}{45} \operatorname {Subst}\left (\int \frac {e^x}{3+x} \, dx,x,\log (x)\right )+\frac {16}{45} \int \frac {1}{3+\log (x)} \, dx+\frac {16}{45} \int \frac {x}{3+\log (x)} \, dx-\frac {16}{45} \int \left (\frac {2}{3+\log (x)}+\frac {x}{3+\log (x)}\right ) \, dx+\frac {16}{45} \operatorname {Subst}\left (\int \frac {e^x}{3+x} \, dx,x,\log (x)\right )\\ &=x+\frac {16 \text {Ei}(3+\log (x))}{45 e^3}+\frac {4 x (2+x)}{45 (3+\log (x))^2}-\frac {8 x}{45 (3+\log (x))}-\frac {8 x (1+x)}{45 (3+\log (x))}+\frac {8 x (2+x)}{45 (3+\log (x))}-\frac {16}{45} \int \frac {x}{3+\log (x)} \, dx+\frac {16}{45} \operatorname {Subst}\left (\int \frac {e^x}{3+x} \, dx,x,\log (x)\right )+\frac {16}{45} \operatorname {Subst}\left (\int \frac {e^{2 x}}{3+x} \, dx,x,\log (x)\right )-\frac {32}{45} \int \frac {1}{3+\log (x)} \, dx\\ &=x+\frac {32 \text {Ei}(3+\log (x))}{45 e^3}+\frac {16 \text {Ei}(2 (3+\log (x)))}{45 e^6}+\frac {4 x (2+x)}{45 (3+\log (x))^2}-\frac {8 x}{45 (3+\log (x))}-\frac {8 x (1+x)}{45 (3+\log (x))}+\frac {8 x (2+x)}{45 (3+\log (x))}-\frac {16}{45} \operatorname {Subst}\left (\int \frac {e^{2 x}}{3+x} \, dx,x,\log (x)\right )-\frac {32}{45} \operatorname {Subst}\left (\int \frac {e^x}{3+x} \, dx,x,\log (x)\right )\\ &=x+\frac {4 x (2+x)}{45 (3+\log (x))^2}-\frac {8 x}{45 (3+\log (x))}-\frac {8 x (1+x)}{45 (3+\log (x))}+\frac {8 x (2+x)}{45 (3+\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 20, normalized size = 1.11 \begin {gather*} \frac {1}{45} \left (45 x+\frac {4 x (2+x)}{(3+\log (x))^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 35, normalized size = 1.94 \begin {gather*} \frac {45 \, x \log \relax (x)^{2} + 4 \, x^{2} + 270 \, x \log \relax (x) + 413 \, x}{45 \, {\left (\log \relax (x)^{2} + 6 \, \log \relax (x) + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 68, normalized size = 3.78 \begin {gather*} \frac {x \log \relax (x)^{2}}{\log \relax (x)^{2} + 6 \, \log \relax (x) + 9} + \frac {4 \, x^{2}}{45 \, {\left (\log \relax (x)^{2} + 6 \, \log \relax (x) + 9\right )}} + \frac {6 \, x \log \relax (x)}{\log \relax (x)^{2} + 6 \, \log \relax (x) + 9} + \frac {413 \, x}{45 \, {\left (\log \relax (x)^{2} + 6 \, \log \relax (x) + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 15, normalized size = 0.83
method | result | size |
risch | \(x +\frac {4 x \left (2+x \right )}{45 \left (3+\ln \relax (x )\right )^{2}}\) | \(15\) |
norman | \(\frac {x \ln \relax (x )^{2}+\frac {413 x}{45}+\frac {4 x^{2}}{45}+6 x \ln \relax (x )}{\left (3+\ln \relax (x )\right )^{2}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {90 \, x \log \relax (x)^{2} + 120 \, x^{2} + {\left (32 \, x^{2} + 1763 \, x\right )} \log \relax (x) + 5718 \, x}{90 \, {\left (\log \relax (x)^{2} + 6 \, \log \relax (x) + 9\right )}} - \frac {1223 \, e^{\left (-3\right )} E_{3}\left (-\log \relax (x) - 3\right )}{45 \, {\left (\log \relax (x) + 3\right )}^{2}} - \frac {16 \, e^{\left (-6\right )} E_{3}\left (-2 \, \log \relax (x) - 6\right )}{45 \, {\left (\log \relax (x) + 3\right )}^{2}} - \frac {1}{45} \, \int \frac {64 \, x + 1223}{2 \, {\left (\log \relax (x) + 3\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.89, size = 14, normalized size = 0.78 \begin {gather*} x+\frac {4\,x\,\left (x+2\right )}{45\,{\left (\ln \relax (x)+3\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 22, normalized size = 1.22 \begin {gather*} x + \frac {4 x^{2} + 8 x}{45 \log {\relax (x )}^{2} + 270 \log {\relax (x )} + 405} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________