Optimal. Leaf size=20 \[ \frac {9+e^5 \log \left (-4+\frac {3 x^3}{100}\right )}{x} \]
________________________________________________________________________________________
Rubi [B] time = 0.53, antiderivative size = 200, normalized size of antiderivative = 10.00, number of steps used = 18, number of rules used = 11, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {6, 1593, 6725, 453, 292, 31, 634, 617, 204, 628, 2455} \begin {gather*} \frac {e^5 \log \left (\frac {3 x^3}{100}-4\right )}{x}-\frac {\sqrt [3]{\frac {3}{2}} e^5 \log \left (3^{2/3} x^2+2\ 5^{2/3} \sqrt [3]{6} x+20\ 2^{2/3} \sqrt [3]{5}\right )}{4\ 5^{2/3}}+\frac {\sqrt [3]{\frac {3}{2}} e^5 \log \left (30^{2/3} x^2+20 \sqrt [3]{15} x+200 \sqrt [3]{2}\right )}{4\ 5^{2/3}}+\frac {9}{x}+\frac {\sqrt [3]{\frac {3}{2}} e^5 \log \left (2 \sqrt [3]{2} 5^{2/3}-\sqrt [3]{3} x\right )}{2\ 5^{2/3}}-\frac {\sqrt [3]{\frac {3}{2}} e^5 \log \left (10\ 2^{2/3}-\sqrt [3]{30} x\right )}{2\ 5^{2/3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 31
Rule 204
Rule 292
Rule 453
Rule 617
Rule 628
Rule 634
Rule 1593
Rule 2455
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3600+\left (-27+9 e^5\right ) x^3+e^5 \left (400-3 x^3\right ) \log \left (\frac {1}{100} \left (-400+3 x^3\right )\right )}{-400 x^2+3 x^5} \, dx\\ &=\int \frac {3600+\left (-27+9 e^5\right ) x^3+e^5 \left (400-3 x^3\right ) \log \left (\frac {1}{100} \left (-400+3 x^3\right )\right )}{x^2 \left (-400+3 x^3\right )} \, dx\\ &=\int \left (\frac {9 \left (-400+\left (3-e^5\right ) x^3\right )}{x^2 \left (400-3 x^3\right )}-\frac {e^5 \log \left (-4+\frac {3 x^3}{100}\right )}{x^2}\right ) \, dx\\ &=9 \int \frac {-400+\left (3-e^5\right ) x^3}{x^2 \left (400-3 x^3\right )} \, dx-e^5 \int \frac {\log \left (-4+\frac {3 x^3}{100}\right )}{x^2} \, dx\\ &=\frac {9}{x}+\frac {e^5 \log \left (-4+\frac {3 x^3}{100}\right )}{x}-\frac {1}{100} \left (9 e^5\right ) \int \frac {x}{-4+\frac {3 x^3}{100}} \, dx-\left (9 e^5\right ) \int \frac {x}{400-3 x^3} \, dx\\ &=\frac {9}{x}+\frac {e^5 \log \left (-4+\frac {3 x^3}{100}\right )}{x}-\frac {\left (\left (\frac {3}{5}\right )^{2/3} e^5\right ) \int \frac {1}{2 \sqrt [3]{2} 5^{2/3}-\sqrt [3]{3} x} \, dx}{2 \sqrt [3]{2}}+\frac {\left (\left (\frac {3}{5}\right )^{2/3} e^5\right ) \int \frac {2 \sqrt [3]{2} 5^{2/3}-\sqrt [3]{3} x}{20\ 2^{2/3} \sqrt [3]{5}+2\ 5^{2/3} \sqrt [3]{6} x+3^{2/3} x^2} \, dx}{2 \sqrt [3]{2}}-\frac {\left (3^{2/3} e^5\right ) \int \frac {1}{-2^{2/3}+\frac {\sqrt [3]{3} x}{10^{2/3}}} \, dx}{20 \sqrt [3]{5}}+\frac {\left (3^{2/3} e^5\right ) \int \frac {-2^{2/3}+\frac {\sqrt [3]{3} x}{10^{2/3}}}{2 \sqrt [3]{2}+\frac {\sqrt [3]{3} x}{5^{2/3}}+\frac {3^{2/3} x^2}{10 \sqrt [3]{10}}} \, dx}{20 \sqrt [3]{5}}\\ &=\frac {9}{x}+\frac {\sqrt [3]{\frac {3}{2}} e^5 \log \left (2 \sqrt [3]{2} 5^{2/3}-\sqrt [3]{3} x\right )}{2\ 5^{2/3}}-\frac {\sqrt [3]{\frac {3}{2}} e^5 \log \left (10\ 2^{2/3}-\sqrt [3]{30} x\right )}{2\ 5^{2/3}}+\frac {e^5 \log \left (-4+\frac {3 x^3}{100}\right )}{x}+\frac {1}{2} \left (3\ 3^{2/3} e^5\right ) \int \frac {1}{20\ 2^{2/3} \sqrt [3]{5}+2\ 5^{2/3} \sqrt [3]{6} x+3^{2/3} x^2} \, dx-\frac {\left (\sqrt [3]{\frac {3}{2}} e^5\right ) \int \frac {2\ 5^{2/3} \sqrt [3]{6}+2\ 3^{2/3} x}{20\ 2^{2/3} \sqrt [3]{5}+2\ 5^{2/3} \sqrt [3]{6} x+3^{2/3} x^2} \, dx}{4\ 5^{2/3}}+\frac {\left (\sqrt [3]{\frac {3}{2}} e^5\right ) \int \frac {\frac {\sqrt [3]{3}}{5^{2/3}}+\frac {3^{2/3} x}{5 \sqrt [3]{10}}}{2 \sqrt [3]{2}+\frac {\sqrt [3]{3} x}{5^{2/3}}+\frac {3^{2/3} x^2}{10 \sqrt [3]{10}}} \, dx}{4\ 5^{2/3}}-\frac {\left (3\ 3^{2/3} e^5\right ) \int \frac {1}{2 \sqrt [3]{2}+\frac {\sqrt [3]{3} x}{5^{2/3}}+\frac {3^{2/3} x^2}{10 \sqrt [3]{10}}} \, dx}{20 \sqrt [3]{10}}\\ &=\frac {9}{x}+\frac {\sqrt [3]{\frac {3}{2}} e^5 \log \left (2 \sqrt [3]{2} 5^{2/3}-\sqrt [3]{3} x\right )}{2\ 5^{2/3}}-\frac {\sqrt [3]{\frac {3}{2}} e^5 \log \left (10\ 2^{2/3}-\sqrt [3]{30} x\right )}{2\ 5^{2/3}}-\frac {\sqrt [3]{\frac {3}{2}} e^5 \log \left (20\ 2^{2/3} \sqrt [3]{5}+2\ 5^{2/3} \sqrt [3]{6} x+3^{2/3} x^2\right )}{4\ 5^{2/3}}+\frac {\sqrt [3]{\frac {3}{2}} e^5 \log \left (200 \sqrt [3]{2}+20 \sqrt [3]{15} x+30^{2/3} x^2\right )}{4\ 5^{2/3}}+\frac {e^5 \log \left (-4+\frac {3 x^3}{100}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 20, normalized size = 1.00 \begin {gather*} \frac {9+e^5 \log \left (-4+\frac {3 x^3}{100}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.32, size = 17, normalized size = 0.85 \begin {gather*} \frac {e^{5} \log \left (\frac {3}{100} \, x^{3} - 4\right ) + 9}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 17, normalized size = 0.85 \begin {gather*} \frac {e^{5} \log \left (\frac {3}{100} \, x^{3} - 4\right ) + 9}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.49, size = 18, normalized size = 0.90
method | result | size |
norman | \(\frac {9+{\mathrm e}^{5} \ln \left (\frac {3 x^{3}}{100}-4\right )}{x}\) | \(18\) |
risch | \(\frac {{\mathrm e}^{5} \ln \left (\frac {3 x^{3}}{100}-4\right )}{x}+\frac {9}{x}\) | \(21\) |
default | \(\frac {9}{x}-\frac {2 \,{\mathrm e}^{5} \ln \left (10\right )}{x}+\frac {{\mathrm e}^{5} \ln \left (3 x^{3}-400\right )}{x}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.12, size = 216, normalized size = 10.80 \begin {gather*} -\frac {1}{100} \cdot 50^{\frac {2}{3}} 3^{\frac {5}{6}} \arctan \left (\frac {1}{150} \cdot 50^{\frac {2}{3}} 3^{\frac {1}{6}} {\left (3^{\frac {2}{3}} x + 50^{\frac {1}{3}} 3^{\frac {1}{3}}\right )}\right ) e^{5} + \frac {1}{200} \cdot 50^{\frac {2}{3}} 3^{\frac {1}{3}} e^{5} \log \left (3^{\frac {2}{3}} x^{2} + 2 \cdot 50^{\frac {1}{3}} 3^{\frac {1}{3}} x + 4 \cdot 50^{\frac {2}{3}}\right ) - \frac {1}{100} \cdot 50^{\frac {2}{3}} 3^{\frac {1}{3}} e^{5} \log \left (\frac {1}{3} \cdot 3^{\frac {2}{3}} {\left (3^{\frac {1}{3}} x - 2 \cdot 50^{\frac {1}{3}}\right )}\right ) + \frac {1}{200} \, {\left (2 \cdot 50^{\frac {2}{3}} 3^{\frac {5}{6}} \arctan \left (\frac {1}{150} \cdot 50^{\frac {2}{3}} 3^{\frac {1}{6}} {\left (3^{\frac {2}{3}} x + 50^{\frac {1}{3}} 3^{\frac {1}{3}}\right )}\right ) - 50^{\frac {2}{3}} 3^{\frac {1}{3}} \log \left (3^{\frac {2}{3}} x^{2} + 2 \cdot 50^{\frac {1}{3}} 3^{\frac {1}{3}} x + 4 \cdot 50^{\frac {2}{3}}\right ) + 2 \cdot 50^{\frac {2}{3}} 3^{\frac {1}{3}} \log \left (\frac {1}{3} \cdot 3^{\frac {2}{3}} {\left (3^{\frac {1}{3}} x - 2 \cdot 50^{\frac {1}{3}}\right )}\right )\right )} e^{5} - \frac {2 \, {\left (\log \relax (5) + \log \relax (2)\right )} e^{5} - e^{5} \log \left (3 \, x^{3} - 400\right )}{x} + \frac {9}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 17, normalized size = 0.85 \begin {gather*} \frac {\ln \left (\frac {3\,x^3}{100}-4\right )\,{\mathrm {e}}^5+9}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 17, normalized size = 0.85 \begin {gather*} \frac {e^{5} \log {\left (\frac {3 x^{3}}{100} - 4 \right )}}{x} + \frac {9}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________