Optimal. Leaf size=27 \[ 2+\frac {e^x}{\left (-1+x-\frac {-1+\frac {1}{4} (-2+x)+\log (x)}{x}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-320 x-96 x^2+208 x^3-64 x^4\right )+e^x \left (128 x+64 x^2\right ) \log (x)}{-216+540 x-882 x^2+845 x^3-588 x^4+240 x^5-64 x^6+\left (432-720 x+876 x^2-480 x^3+192 x^4\right ) \log (x)+\left (-288+240 x-192 x^2\right ) \log ^2(x)+64 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 e^x x \left (20+6 x-13 x^2+4 x^3-4 (2+x) \log (x)\right )}{\left (6-5 x+4 x^2-4 \log (x)\right )^3} \, dx\\ &=16 \int \frac {e^x x \left (20+6 x-13 x^2+4 x^3-4 (2+x) \log (x)\right )}{\left (6-5 x+4 x^2-4 \log (x)\right )^3} \, dx\\ &=16 \int \left (-\frac {2 e^x x \left (-4-5 x+8 x^2\right )}{\left (6-5 x+4 x^2-4 \log (x)\right )^3}+\frac {e^x x (2+x)}{\left (6-5 x+4 x^2-4 \log (x)\right )^2}\right ) \, dx\\ &=16 \int \frac {e^x x (2+x)}{\left (6-5 x+4 x^2-4 \log (x)\right )^2} \, dx-32 \int \frac {e^x x \left (-4-5 x+8 x^2\right )}{\left (6-5 x+4 x^2-4 \log (x)\right )^3} \, dx\\ &=16 \int \left (\frac {2 e^x x}{\left (6-5 x+4 x^2-4 \log (x)\right )^2}+\frac {e^x x^2}{\left (6-5 x+4 x^2-4 \log (x)\right )^2}\right ) \, dx-32 \int \left (-\frac {4 e^x x}{\left (6-5 x+4 x^2-4 \log (x)\right )^3}-\frac {5 e^x x^2}{\left (6-5 x+4 x^2-4 \log (x)\right )^3}+\frac {8 e^x x^3}{\left (6-5 x+4 x^2-4 \log (x)\right )^3}\right ) \, dx\\ &=16 \int \frac {e^x x^2}{\left (6-5 x+4 x^2-4 \log (x)\right )^2} \, dx+32 \int \frac {e^x x}{\left (6-5 x+4 x^2-4 \log (x)\right )^2} \, dx+128 \int \frac {e^x x}{\left (6-5 x+4 x^2-4 \log (x)\right )^3} \, dx+160 \int \frac {e^x x^2}{\left (6-5 x+4 x^2-4 \log (x)\right )^3} \, dx-256 \int \frac {e^x x^3}{\left (6-5 x+4 x^2-4 \log (x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 24, normalized size = 0.89 \begin {gather*} \frac {16 e^x x^2}{\left (-6+5 x-4 x^2+4 \log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 49, normalized size = 1.81 \begin {gather*} \frac {16 \, x^{2} e^{x}}{16 \, x^{4} - 40 \, x^{3} + 73 \, x^{2} - 8 \, {\left (4 \, x^{2} - 5 \, x + 6\right )} \log \relax (x) + 16 \, \log \relax (x)^{2} - 60 \, x + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 51, normalized size = 1.89 \begin {gather*} \frac {16 \, x^{2} e^{x}}{16 \, x^{4} - 40 \, x^{3} - 32 \, x^{2} \log \relax (x) + 73 \, x^{2} + 40 \, x \log \relax (x) + 16 \, \log \relax (x)^{2} - 60 \, x - 48 \, \log \relax (x) + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 0.89
method | result | size |
risch | \(\frac {16 x^{2} {\mathrm e}^{x}}{\left (4 x^{2}-5 x -4 \ln \relax (x )+6\right )^{2}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.85, size = 49, normalized size = 1.81 \begin {gather*} \frac {16 \, x^{2} e^{x}}{16 \, x^{4} - 40 \, x^{3} + 73 \, x^{2} - 8 \, {\left (4 \, x^{2} - 5 \, x + 6\right )} \log \relax (x) + 16 \, \log \relax (x)^{2} - 60 \, x + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^x\,\left (64\,x^4-208\,x^3+96\,x^2+320\,x\right )-{\mathrm {e}}^x\,\ln \relax (x)\,\left (64\,x^2+128\,x\right )}{540\,x-{\ln \relax (x)}^2\,\left (192\,x^2-240\,x+288\right )+\ln \relax (x)\,\left (192\,x^4-480\,x^3+876\,x^2-720\,x+432\right )+64\,{\ln \relax (x)}^3-882\,x^2+845\,x^3-588\,x^4+240\,x^5-64\,x^6-216} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 54, normalized size = 2.00 \begin {gather*} \frac {16 x^{2} e^{x}}{16 x^{4} - 40 x^{3} - 32 x^{2} \log {\relax (x )} + 73 x^{2} + 40 x \log {\relax (x )} - 60 x + 16 \log {\relax (x )}^{2} - 48 \log {\relax (x )} + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________