Optimal. Leaf size=28 \[ \frac {e^{-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \]
________________________________________________________________________________________
Rubi [F] time = 25.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {15 x^2-15 x^3+e^{4+4 e^{3/x} x+e^{6/x} x^2} \left (3 x^2-3 x^3+e^{3/x} \left (12 x^2-4 x^3\right )+e^{6/x} \left (6 x^3-2 x^4\right )\right )}{25 e^{3 x}+10 e^{4+3 x+4 e^{3/x} x+e^{6/x} x^2}+e^{8+3 x+8 e^{3/x} x+2 e^{6/x} x^2}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-3 x} \left (15 x^2-15 x^3+e^{4+4 e^{3/x} x+e^{6/x} x^2} \left (3 x^2-3 x^3+e^{3/x} \left (12 x^2-4 x^3\right )+e^{6/x} \left (6 x^3-2 x^4\right )\right )\right )}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx\\ &=\int \frac {e^{-3 x} x^2 \left (15-15 x+e^{\left (2+e^{3/x} x\right )^2} \left (3-4 e^{3/x} (-3+x)-3 x-2 e^{6/x} (-3+x) x\right )\right )}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx\\ &=\int \left (\frac {10 e^{\frac {3}{x}-3 x} (-3+x) x^2 \left (2+e^{3/x} x\right )}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2}-\frac {e^{-3 x} x^2 \left (-3-12 e^{3/x}+3 x+4 e^{3/x} x-6 e^{6/x} x+2 e^{6/x} x^2\right )}{5+e^{\left (2+e^{3/x} x\right )^2}}\right ) \, dx\\ &=10 \int \frac {e^{\frac {3}{x}-3 x} (-3+x) x^2 \left (2+e^{3/x} x\right )}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx-\int \frac {e^{-3 x} x^2 \left (-3-12 e^{3/x}+3 x+4 e^{3/x} x-6 e^{6/x} x+2 e^{6/x} x^2\right )}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx\\ &=10 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} (3-x) x^2 \left (-2-e^{3/x} x\right )}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx-\int \frac {e^{-3 x} x^2 \left (4 e^{3/x} (-3+x)+3 (-1+x)+2 e^{6/x} (-3+x) x\right )}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx\\ &=10 \int \left (-\frac {3 e^{-\frac {3 \left (-1+x^2\right )}{x}} x^2 \left (2+e^{3/x} x\right )}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2}+\frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^3 \left (2+e^{3/x} x\right )}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2}\right ) \, dx-\int \left (-\frac {12 e^{\frac {3}{x}-3 x} x^2}{5+e^{\left (2+e^{3/x} x\right )^2}}-\frac {3 e^{-3 x} x^2}{5+e^{\left (2+e^{3/x} x\right )^2}}+\frac {4 e^{\frac {3}{x}-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}}-\frac {6 e^{\frac {6}{x}-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}}+\frac {3 e^{-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}}+\frac {2 e^{\frac {6}{x}-3 x} x^4}{5+e^{\left (2+e^{3/x} x\right )^2}}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {6}{x}-3 x} x^4}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx\right )+3 \int \frac {e^{-3 x} x^2}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx-3 \int \frac {e^{-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx-4 \int \frac {e^{\frac {3}{x}-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx+6 \int \frac {e^{\frac {6}{x}-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx+10 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^3 \left (2+e^{3/x} x\right )}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx+12 \int \frac {e^{\frac {3}{x}-3 x} x^2}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx-30 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^2 \left (2+e^{3/x} x\right )}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx\\ &=-\left (2 \int \frac {e^{-\frac {3 \left (-2+x^2\right )}{x}} x^4}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx\right )+3 \int \frac {e^{-3 x} x^2}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx-3 \int \frac {e^{-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx-4 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx+6 \int \frac {e^{-\frac {3 \left (-2+x^2\right )}{x}} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx+10 \int \left (\frac {2 e^{-\frac {3 \left (-1+x^2\right )}{x}} x^3}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2}+\frac {e^{\frac {3}{x}-\frac {3 \left (-1+x^2\right )}{x}} x^4}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2}\right ) \, dx+12 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^2}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx-30 \int \left (\frac {2 e^{-\frac {3 \left (-1+x^2\right )}{x}} x^2}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2}+\frac {e^{\frac {3}{x}-\frac {3 \left (-1+x^2\right )}{x}} x^3}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-\frac {3 \left (-2+x^2\right )}{x}} x^4}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx\right )+3 \int \frac {e^{-3 x} x^2}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx-3 \int \frac {e^{-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx-4 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx+6 \int \frac {e^{-\frac {3 \left (-2+x^2\right )}{x}} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx+10 \int \frac {e^{\frac {3}{x}-\frac {3 \left (-1+x^2\right )}{x}} x^4}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx+12 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^2}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx+20 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^3}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx-30 \int \frac {e^{\frac {3}{x}-\frac {3 \left (-1+x^2\right )}{x}} x^3}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx-60 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^2}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx\\ &=-\left (2 \int \frac {e^{-\frac {3 \left (-2+x^2\right )}{x}} x^4}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx\right )+3 \int \frac {e^{-3 x} x^2}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx-3 \int \frac {e^{-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx-4 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx+6 \int \frac {e^{-\frac {3 \left (-2+x^2\right )}{x}} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx+10 \int \frac {e^{-\frac {3 \left (-2+x^2\right )}{x}} x^4}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx+12 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^2}{5+e^{\left (2+e^{3/x} x\right )^2}} \, dx+20 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^3}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx-30 \int \frac {e^{-\frac {3 \left (-2+x^2\right )}{x}} x^3}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx-60 \int \frac {e^{-\frac {3 \left (-1+x^2\right )}{x}} x^2}{\left (5+e^{\left (2+e^{3/x} x\right )^2}\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 28, normalized size = 1.00 \begin {gather*} \frac {e^{-3 x} x^3}{5+e^{\left (2+e^{3/x} x\right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 38, normalized size = 1.36 \begin {gather*} \frac {x^{3}}{e^{\left (x^{2} e^{\frac {6}{x}} + 4 \, x e^{\frac {3}{x}} + 3 \, x + 4\right )} + 5 \, e^{\left (3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {15 \, x^{3} - 15 \, x^{2} + {\left (3 \, x^{3} - 3 \, x^{2} + 2 \, {\left (x^{4} - 3 \, x^{3}\right )} e^{\frac {6}{x}} + 4 \, {\left (x^{3} - 3 \, x^{2}\right )} e^{\frac {3}{x}}\right )} e^{\left (x^{2} e^{\frac {6}{x}} + 4 \, x e^{\frac {3}{x}} + 4\right )}}{e^{\left (2 \, x^{2} e^{\frac {6}{x}} + 8 \, x e^{\frac {3}{x}} + 3 \, x + 8\right )} + 10 \, e^{\left (x^{2} e^{\frac {6}{x}} + 4 \, x e^{\frac {3}{x}} + 3 \, x + 4\right )} + 25 \, e^{\left (3 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 35, normalized size = 1.25
method | result | size |
risch | \(\frac {x^{3} {\mathrm e}^{-3 x}}{{\mathrm e}^{x^{2} {\mathrm e}^{\frac {6}{x}}+4 x \,{\mathrm e}^{\frac {3}{x}}+4}+5}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 38, normalized size = 1.36 \begin {gather*} \frac {x^{3}}{e^{\left (x^{2} e^{\frac {6}{x}} + 4 \, x e^{\frac {3}{x}} + 3 \, x + 4\right )} + 5 \, e^{\left (3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.85, size = 41, normalized size = 1.46 \begin {gather*} \frac {x^3}{5\,{\mathrm {e}}^{3\,x}+{\mathrm {e}}^{x^2\,{\mathrm {e}}^{6/x}}\,{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{3/x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 34, normalized size = 1.21 \begin {gather*} \frac {x^{3}}{e^{3 x} e^{x^{2} e^{\frac {6}{x}} + 4 x e^{\frac {3}{x}} + 4} + 5 e^{3 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________