Optimal. Leaf size=31 \[ \frac {x+\log (5)-\log \left (20+\frac {x^2}{5}-\frac {5+x}{x}\right )}{3 x} \]
________________________________________________________________________________________
Rubi [A] time = 9.28, antiderivative size = 46, normalized size of antiderivative = 1.48, number of steps used = 24, number of rules used = 10, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {1594, 6742, 2100, 2079, 800, 634, 618, 204, 628, 2525} \begin {gather*} -\frac {\log \left (-\frac {-x^3-95 x+25}{5 x}\right )}{3 x}+\frac {1}{3 x}-\frac {1-\log (5)}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 204
Rule 618
Rule 628
Rule 634
Rule 800
Rule 1594
Rule 2079
Rule 2100
Rule 2525
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-25-2 x^3+\left (25-95 x-x^3\right ) \log (5)+\left (-25+95 x+x^3\right ) \log \left (\frac {-25+95 x+x^3}{5 x}\right )}{x^2 \left (-75+285 x+3 x^3\right )} \, dx\\ &=\int \left (\frac {25 (1-\log (5))+95 x \log (5)+x^3 (2+\log (5))}{3 x^2 \left (25-95 x-x^3\right )}+\frac {\log \left (\frac {-25+95 x+x^3}{5 x}\right )}{3 x^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {25 (1-\log (5))+95 x \log (5)+x^3 (2+\log (5))}{x^2 \left (25-95 x-x^3\right )} \, dx+\frac {1}{3} \int \frac {\log \left (\frac {-25+95 x+x^3}{5 x}\right )}{x^2} \, dx\\ &=-\frac {\log \left (-\frac {25-95 x-x^3}{5 x}\right )}{3 x}+\frac {1}{3} \int \frac {-25-2 x^3}{x^2 \left (25-95 x-x^3\right )} \, dx+\frac {1}{3} \int \left (\frac {19}{5 x}+\frac {-1805-15 x-19 x^2}{5 \left (-25+95 x+x^3\right )}+\frac {1-\log (5)}{x^2}\right ) \, dx\\ &=-\frac {1-\log (5)}{3 x}+\frac {19 \log (x)}{15}-\frac {\log \left (-\frac {25-95 x-x^3}{5 x}\right )}{3 x}+\frac {1}{15} \int \frac {-1805-15 x-19 x^2}{-25+95 x+x^3} \, dx+\frac {1}{3} \int \left (-\frac {1}{x^2}-\frac {19}{5 x}+\frac {1805+15 x+19 x^2}{5 \left (-25+95 x+x^3\right )}\right ) \, dx\\ &=\frac {1}{3 x}-\frac {1-\log (5)}{3 x}-\frac {\log \left (-\frac {25-95 x-x^3}{5 x}\right )}{3 x}-\frac {19}{45} \log \left (-25+95 x+x^3\right )+\frac {1}{45} \int \frac {-3610-45 x}{-25+95 x+x^3} \, dx+\frac {1}{15} \int \frac {1805+15 x+19 x^2}{-25+95 x+x^3} \, dx\\ &=\frac {1}{3 x}-\frac {1-\log (5)}{3 x}-\frac {\log \left (-\frac {25-95 x-x^3}{5 x}\right )}{3 x}+\frac {1}{45} \int \frac {-3610-45 x}{\left (\frac {\sqrt [3]{5} \left (38 \sqrt [3]{\frac {15}{45+\sqrt {413565}}}-\sqrt [3]{2 \left (45+\sqrt {413565}\right )}\right )}{6^{2/3}}+x\right ) \left (\frac {1}{18} \left (570+10830 \sqrt [3]{15} \left (\frac {2}{45+\sqrt {413565}}\right )^{2/3}+\sqrt [3]{2} \left (15 \left (45+\sqrt {413565}\right )\right )^{2/3}\right )-\frac {\left (19\ 5^{2/3} \sqrt [3]{\frac {6}{45+\sqrt {413565}}}-\sqrt [3]{\frac {5}{2} \left (45+\sqrt {413565}\right )}\right ) x}{3^{2/3}}+x^2\right )} \, dx+\frac {1}{45} \int \frac {3610+45 x}{-25+95 x+x^3} \, dx\\ &=\frac {1}{3 x}-\frac {1-\log (5)}{3 x}-\frac {\log \left (-\frac {25-95 x-x^3}{5 x}\right )}{3 x}+\frac {1}{45} \int \frac {3610+45 x}{\left (\frac {\sqrt [3]{5} \left (38 \sqrt [3]{\frac {15}{45+\sqrt {413565}}}-\sqrt [3]{2 \left (45+\sqrt {413565}\right )}\right )}{6^{2/3}}+x\right ) \left (\frac {1}{18} \left (570+10830 \sqrt [3]{15} \left (\frac {2}{45+\sqrt {413565}}\right )^{2/3}+\sqrt [3]{2} \left (15 \left (45+\sqrt {413565}\right )\right )^{2/3}\right )-\frac {\left (19\ 5^{2/3} \sqrt [3]{\frac {6}{45+\sqrt {413565}}}-\sqrt [3]{\frac {5}{2} \left (45+\sqrt {413565}\right )}\right ) x}{3^{2/3}}+x^2\right )} \, dx+\frac {1}{45} \int \left (\frac {90 \left (-1444+114\ 15^{2/3} \sqrt [3]{\frac {2}{45+\sqrt {413565}}}-3\ 2^{2/3} \sqrt [3]{15 \left (45+\sqrt {413565}\right )}\right )}{\left (-570+10830 \sqrt [3]{15} \left (\frac {2}{45+\sqrt {413565}}\right )^{2/3}+\sqrt [3]{2} \left (15 \left (45+\sqrt {413565}\right )\right )^{2/3}\right ) \left (38\ 15^{2/3} \sqrt [3]{\frac {2}{45+\sqrt {413565}}}-2^{2/3} \sqrt [3]{15 \left (45+\sqrt {413565}\right )}+6 x\right )}+\frac {90 \left (1710+54872\ 15^{2/3} \sqrt [3]{\frac {2}{45+\sqrt {413565}}}+32490 \sqrt [3]{15} \left (\frac {2}{45+\sqrt {413565}}\right )^{2/3}-1444\ 2^{2/3} \sqrt [3]{15 \left (45+\sqrt {413565}\right )}+3 \sqrt [3]{2} \left (15 \left (45+\sqrt {413565}\right )\right )^{2/3}-3 \left (1444-2^{2/3} \left (\frac {57\ 30^{2/3}}{\sqrt [3]{45+\sqrt {413565}}}-3 \sqrt [3]{15 \left (45+\sqrt {413565}\right )}\right )\right ) x\right )}{\left (570-10830 \sqrt [3]{15} \left (\frac {2}{45+\sqrt {413565}}\right )^{2/3}-\sqrt [3]{2} \left (15 \left (45+\sqrt {413565}\right )\right )^{2/3}\right ) \left (570+10830 \sqrt [3]{15} \left (\frac {2}{45+\sqrt {413565}}\right )^{2/3}+\sqrt [3]{2} \left (15 \left (45+\sqrt {413565}\right )\right )^{2/3}-3\ 2^{2/3} \left (\frac {19\ 30^{2/3}}{\sqrt [3]{45+\sqrt {413565}}}-\sqrt [3]{15 \left (45+\sqrt {413565}\right )}\right ) x+18 x^2\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 28, normalized size = 0.90 \begin {gather*} \frac {1}{3} \left (\frac {2 \log (5)}{x}-\frac {\log \left (95-\frac {25}{x}+x^2\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 24, normalized size = 0.77 \begin {gather*} \frac {\log \relax (5) - \log \left (\frac {x^{3} + 95 \, x - 25}{5 \, x}\right )}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 29, normalized size = 0.94 \begin {gather*} \frac {2 \, \log \relax (5)}{3 \, x} - \frac {\log \left (x^{3} + 95 \, x - 25\right )}{3 \, x} + \frac {\log \relax (x)}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 26, normalized size = 0.84
method | result | size |
norman | \(\frac {\frac {\ln \relax (5)}{3}-\frac {\ln \left (\frac {x^{3}+95 x -25}{5 x}\right )}{3}}{x}\) | \(26\) |
default | \(-\frac {\ln \left (\frac {x^{3}+95 x -25}{x}\right )}{3 x}+\frac {2 \ln \relax (5)}{3 x}\) | \(27\) |
risch | \(-\frac {\ln \left (\frac {x^{3}+95 x -25}{5 x}\right )}{3 x}+\frac {\ln \relax (5)}{3 x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 23, normalized size = 0.74 \begin {gather*} \frac {2 \, \log \relax (5) - \log \left (x^{3} + 95 \, x - 25\right ) + \log \relax (x)}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.92, size = 25, normalized size = 0.81 \begin {gather*} \frac {2\,\ln \relax (5)-\ln \left (\frac {x^3+95\,x-25}{x}\right )}{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 22, normalized size = 0.71 \begin {gather*} - \frac {\log {\left (\frac {\frac {x^{3}}{5} + 19 x - 5}{x} \right )}}{3 x} + \frac {\log {\relax (5 )}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________