Optimal. Leaf size=26 \[ \log \left (5+\log \left (\frac {\log (x) \left (2-\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2-2 e^x+\left (1+e^x (1-x)\right ) \log (x)+\left (1+e^x+\left (-1-e^x\right ) \log (x)\right ) \log \left (\frac {5}{x+e^x x}\right )}{\left (-10 x-10 e^x x\right ) \log (x)+\left (5 x+5 e^x x\right ) \log (x) \log \left (\frac {5}{x+e^x x}\right )+\left (\left (-2 x-2 e^x x\right ) \log (x)+\left (x+e^x x\right ) \log (x) \log \left (\frac {5}{x+e^x x}\right )\right ) \log \left (\frac {2 \log (x)-\log (x) \log \left (\frac {5}{x+e^x x}\right )}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left (\left (1+e^x\right ) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )\right )+\log (x) \left (-1+e^x (-1+x)+\left (1+e^x\right ) \log \left (\frac {5}{x+e^x x}\right )\right )}{\left (1+e^x\right ) x \log (x) \left (2-\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )} \, dx\\ &=\int \left (\frac {1}{\left (1+e^x\right ) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )}+\frac {-2+\log (x)-x \log (x)+\log \left (\frac {5}{x+e^x x}\right )-\log (x) \log \left (\frac {5}{x+e^x x}\right )}{x \log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )}\right ) \, dx\\ &=\int \frac {1}{\left (1+e^x\right ) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )} \, dx+\int \frac {-2+\log (x)-x \log (x)+\log \left (\frac {5}{x+e^x x}\right )-\log (x) \log \left (\frac {5}{x+e^x x}\right )}{x \log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )} \, dx\\ &=\int \frac {1}{\left (1+e^x\right ) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )} \, dx+\int \left (-\frac {1}{\left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )}+\frac {1}{x \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )}-\frac {2}{x \log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )}-\frac {\log \left (\frac {5}{x+e^x x}\right )}{x \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )}+\frac {\log \left (\frac {5}{x+e^x x}\right )}{x \log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {1}{x \log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )} \, dx\right )-\int \frac {1}{\left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )} \, dx+\int \frac {1}{\left (1+e^x\right ) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )} \, dx+\int \frac {1}{x \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )} \, dx-\int \frac {\log \left (\frac {5}{x+e^x x}\right )}{x \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )} \, dx+\int \frac {\log \left (\frac {5}{x+e^x x}\right )}{x \log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right ) \left (5+\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 27, normalized size = 1.04 \begin {gather*} \log \left (-5-\log \left (-\frac {\log (x) \left (-2+\log \left (\frac {5}{x+e^x x}\right )\right )}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 28, normalized size = 1.08 \begin {gather*} \log \left (\log \left (-\frac {\log \relax (x) \log \left (\frac {5}{x e^{x} + x}\right ) - 2 \, \log \relax (x)}{x}\right ) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.25, size = 31, normalized size = 1.19 \begin {gather*} \log \left (\log \left (-\log \relax (5) \log \relax (x) + \log \relax (x)^{2} + \log \relax (x) \log \left (e^{x} + 1\right ) + 2 \, \log \relax (x)\right ) - \log \relax (x) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 4.12, size = 15838, normalized size = 609.15
method | result | size |
risch | \(\text {Expression too large to display}\) | \(15838\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.88, size = 24, normalized size = 0.92 \begin {gather*} \log \left (-\log \relax (x) + \log \left (-\log \relax (5) + \log \relax (x) + \log \left (e^{x} + 1\right ) + 2\right ) + \log \left (\log \relax (x)\right ) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.50, size = 28, normalized size = 1.08 \begin {gather*} \ln \left (\ln \left (\frac {2\,\ln \relax (x)-\ln \left (\frac {5}{x+x\,{\mathrm {e}}^x}\right )\,\ln \relax (x)}{x}\right )+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 143.71, size = 24, normalized size = 0.92 \begin {gather*} \log {\left (\log {\left (\frac {- \log {\relax (x )} \log {\left (\frac {5}{x e^{x} + x} \right )} + 2 \log {\relax (x )}}{x} \right )} + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________