Optimal. Leaf size=33 \[ -x+\left (x-e^{-2 \left (1+\frac {\log (2) \left (-e^x+\log (2)\right ) \log (4)}{x}\right )} x\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 8.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (-\frac {2 \left (2 x-2 e^x \log (2) \log (4)+2 \log ^2(2) \log (4)\right )}{x}\right ) \left (2 x+\exp \left (\frac {2 \left (2 x-2 e^x \log (2) \log (4)+2 \log ^2(2) \log (4)\right )}{x}\right ) (-1+2 x)+e^x (-4+4 x) \log (2) \log (4)+4 \log ^2(2) \log (4)+\exp \left (\frac {2 x-2 e^x \log (2) \log (4)+2 \log ^2(2) \log (4)}{x}\right ) \left (-4 x+e^x (4-4 x) \log (2) \log (4)-4 \log ^2(2) \log (4)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \exp \left (-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) \left (2 x+\exp \left (\frac {2 \left (2 x-2 e^x \log (2) \log (4)+2 \log ^2(2) \log (4)\right )}{x}\right ) (-1+2 x)+e^x (-4+4 x) \log (2) \log (4)+4 \log ^2(2) \log (4)+\exp \left (\frac {2 x-2 e^x \log (2) \log (4)+2 \log ^2(2) \log (4)}{x}\right ) \left (-4 x+e^x (4-4 x) \log (2) \log (4)-4 \log ^2(2) \log (4)\right )\right ) \, dx\\ &=\int \left (-1+2 x+2 \exp \left (-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) x+4 \exp \left (x-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) (-1+x) \log (2) \log (4)+4 \exp \left (-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) \log ^2(2) \log (4)-4 \exp \left (2-\frac {2 \left (e^x-\log (2)\right ) \log (2) \log (4)}{x}-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) \left (x-e^x \log (2) \log (4)+e^x x \log (2) \log (4)+\log ^2(2) \log (4)\right )\right ) \, dx\\ &=-x+x^2+2 \int \exp \left (-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) x \, dx-4 \int \exp \left (2-\frac {2 \left (e^x-\log (2)\right ) \log (2) \log (4)}{x}-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) \left (x-e^x \log (2) \log (4)+e^x x \log (2) \log (4)+\log ^2(2) \log (4)\right ) \, dx+(4 \log (2) \log (4)) \int \exp \left (x-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) (-1+x) \, dx+\left (4 \log ^2(2) \log (4)\right ) \int \exp \left (-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) \, dx\\ &=-x+x^2-\frac {2^{1-\frac {2 \left (e^x-\log (2)\right ) \log (4)}{x}} \exp \left (2-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) \left (e^x \log (2) \log (4)-e^x x \log (2) \log (4)-\log ^2(2) \log (4)\right )}{\frac {e^x \log (2) \log (4)}{x}-\frac {\left (e^x-\log (2)\right ) \log (2) \log (4)}{x^2}+\frac {2 \left (1-e^x \log (2) \log (4)\right )}{x}-\frac {2 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x^2}}+2 \int \exp \left (-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) x \, dx+(4 \log (2) \log (4)) \int \left (-\exp \left (x-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right )+\exp \left (x-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) x\right ) \, dx+\left (4 \log ^2(2) \log (4)\right ) \int \exp \left (-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) \, dx\\ &=-x+x^2-\frac {2^{1-\frac {2 \left (e^x-\log (2)\right ) \log (4)}{x}} \exp \left (2-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) \left (e^x \log (2) \log (4)-e^x x \log (2) \log (4)-\log ^2(2) \log (4)\right )}{\frac {e^x \log (2) \log (4)}{x}-\frac {\left (e^x-\log (2)\right ) \log (2) \log (4)}{x^2}+\frac {2 \left (1-e^x \log (2) \log (4)\right )}{x}-\frac {2 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x^2}}+2 \int \exp \left (-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) x \, dx-(4 \log (2) \log (4)) \int \exp \left (x-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) \, dx+(4 \log (2) \log (4)) \int \exp \left (x-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) x \, dx+\left (4 \log ^2(2) \log (4)\right ) \int \exp \left (-\frac {4 \left (x-e^x \log (2) \log (4)+\log ^2(2) \log (4)\right )}{x}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.59, size = 58, normalized size = 1.76 \begin {gather*} x \left (-1+\left (1+e^{-\frac {4 \left (x+2 \log ^3(2)-e^x \log (2) \log (4)\right )}{x}}-2 e^{\frac {-2 x-4 \log ^3(2)+e^x \log ^2(4)}{x}}\right ) x\right ) \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 94, normalized size = 2.85 \begin {gather*} -{\left (2 \, x^{2} e^{\left (-\frac {2 \, {\left (2 \, e^{x} \log \relax (2)^{2} - 2 \, \log \relax (2)^{3} - x\right )}}{x}\right )} - x^{2} - {\left (x^{2} - x\right )} e^{\left (-\frac {4 \, {\left (2 \, e^{x} \log \relax (2)^{2} - 2 \, \log \relax (2)^{3} - x\right )}}{x}\right )}\right )} e^{\left (\frac {4 \, {\left (2 \, e^{x} \log \relax (2)^{2} - 2 \, \log \relax (2)^{3} - x\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (8 \, {\left (x - 1\right )} e^{x} \log \relax (2)^{2} + 8 \, \log \relax (2)^{3} - 4 \, {\left (2 \, {\left (x - 1\right )} e^{x} \log \relax (2)^{2} + 2 \, \log \relax (2)^{3} + x\right )} e^{\left (-\frac {2 \, {\left (2 \, e^{x} \log \relax (2)^{2} - 2 \, \log \relax (2)^{3} - x\right )}}{x}\right )} + {\left (2 \, x - 1\right )} e^{\left (-\frac {4 \, {\left (2 \, e^{x} \log \relax (2)^{2} - 2 \, \log \relax (2)^{3} - x\right )}}{x}\right )} + 2 \, x\right )} e^{\left (\frac {4 \, {\left (2 \, e^{x} \log \relax (2)^{2} - 2 \, \log \relax (2)^{3} - x\right )}}{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 65, normalized size = 1.97
method | result | size |
risch | \(x^{2}-x -2 x^{2} {\mathrm e}^{\frac {4 \ln \relax (2)^{2} {\mathrm e}^{x}-4 \ln \relax (2)^{3}-2 x}{x}}+x^{2} {\mathrm e}^{\frac {8 \ln \relax (2)^{2} {\mathrm e}^{x}-8 \ln \relax (2)^{3}-4 x}{x}}\) | \(65\) |
norman | \(\left (x^{2}+x^{2} {\mathrm e}^{\frac {-8 \ln \relax (2)^{2} {\mathrm e}^{x}+8 \ln \relax (2)^{3}+4 x}{x}}-x \,{\mathrm e}^{\frac {-8 \ln \relax (2)^{2} {\mathrm e}^{x}+8 \ln \relax (2)^{3}+4 x}{x}}-2 x^{2} {\mathrm e}^{\frac {-4 \ln \relax (2)^{2} {\mathrm e}^{x}+4 \ln \relax (2)^{3}+2 x}{x}}\right ) {\mathrm e}^{-\frac {2 \left (-4 \ln \relax (2)^{2} {\mathrm e}^{x}+4 \ln \relax (2)^{3}+2 x \right )}{x}}\) | \(116\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.94, size = 65, normalized size = 1.97 \begin {gather*} x^{2} + {\left (x^{2} e^{\left (\frac {8 \, e^{x} \log \relax (2)^{2}}{x}\right )} - 2 \, x^{2} e^{\left (\frac {4 \, e^{x} \log \relax (2)^{2}}{x} + \frac {4 \, \log \relax (2)^{3}}{x} + 2\right )}\right )} e^{\left (-\frac {8 \, \log \relax (2)^{3}}{x} - 4\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.02, size = 62, normalized size = 1.88 \begin {gather*} x^2-x-2\,x^2\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^x\,{\ln \relax (2)}^2}{x}-\frac {4\,{\ln \relax (2)}^3}{x}-2}+x^2\,{\mathrm {e}}^{\frac {8\,{\mathrm {e}}^x\,{\ln \relax (2)}^2}{x}-\frac {8\,{\ln \relax (2)}^3}{x}-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.28, size = 60, normalized size = 1.82 \begin {gather*} x^{2} - 2 x^{2} e^{- \frac {2 x - 4 e^{x} \log {\relax (2 )}^{2} + 4 \log {\relax (2 )}^{3}}{x}} + x^{2} e^{- \frac {2 \left (2 x - 4 e^{x} \log {\relax (2 )}^{2} + 4 \log {\relax (2 )}^{3}\right )}{x}} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________