Optimal. Leaf size=24 \[ \frac {2 \left (3+\frac {5}{x}\right ) (-5+x) (x-x \log (x))}{5 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 30, normalized size of antiderivative = 1.25, number of steps used = 7, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {12, 14, 43, 2334} \begin {gather*} \frac {6 x}{5}-\frac {10}{x}+\frac {2}{5} \left (\frac {25}{x}-3 x\right ) \log (x)+4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {100+20 x+\left (-50-6 x^2\right ) \log (x)}{x^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {20 (5+x)}{x^2}-\frac {2 \left (25+3 x^2\right ) \log (x)}{x^2}\right ) \, dx\\ &=-\left (\frac {2}{5} \int \frac {\left (25+3 x^2\right ) \log (x)}{x^2} \, dx\right )+4 \int \frac {5+x}{x^2} \, dx\\ &=\frac {2}{5} \left (\frac {25}{x}-3 x\right ) \log (x)+\frac {2}{5} \int \left (3-\frac {25}{x^2}\right ) \, dx+4 \int \left (\frac {5}{x^2}+\frac {1}{x}\right ) \, dx\\ &=-\frac {10}{x}+\frac {6 x}{5}+4 \log (x)+\frac {2}{5} \left (\frac {25}{x}-3 x\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 29, normalized size = 1.21 \begin {gather*} -\frac {10}{x}+\frac {6 x}{5}+4 \log (x)+\frac {10 \log (x)}{x}-\frac {6}{5} x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 26, normalized size = 1.08 \begin {gather*} \frac {2 \, {\left (3 \, x^{2} - {\left (3 \, x^{2} - 10 \, x - 25\right )} \log \relax (x) - 25\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 26, normalized size = 1.08 \begin {gather*} -\frac {2}{5} \, {\left (3 \, x - \frac {25}{x}\right )} \log \relax (x) + \frac {6}{5} \, x - \frac {10}{x} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 26, normalized size = 1.08
method | result | size |
default | \(-\frac {6 x \ln \relax (x )}{5}+\frac {6 x}{5}+\frac {10 \ln \relax (x )}{x}-\frac {10}{x}+4 \ln \relax (x )\) | \(26\) |
norman | \(\frac {-10+4 x \ln \relax (x )+\frac {6 x^{2}}{5}-\frac {6 x^{2} \ln \relax (x )}{5}+10 \ln \relax (x )}{x}\) | \(28\) |
risch | \(-\frac {2 \left (3 x^{2}-25\right ) \ln \relax (x )}{5 x}+\frac {4 x \ln \relax (x )+\frac {6 x^{2}}{5}-10}{x}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 25, normalized size = 1.04 \begin {gather*} -\frac {6}{5} \, x \log \relax (x) + \frac {6}{5} \, x + \frac {10 \, \log \relax (x)}{x} - \frac {10}{x} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 24, normalized size = 1.00 \begin {gather*} 4\,\ln \relax (x)-x\,\left (\frac {6\,\ln \relax (x)}{5}-\frac {6}{5}\right )+\frac {10\,\ln \relax (x)-10}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 26, normalized size = 1.08 \begin {gather*} \frac {6 x}{5} + 4 \log {\relax (x )} + \frac {\left (50 - 6 x^{2}\right ) \log {\relax (x )}}{5 x} - \frac {10}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________