Optimal. Leaf size=31 \[ \frac {x}{x^2+x \left (3+\frac {5-e^{2 x}+x}{-3+x+x^2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+16 x+6 x^2-2 x^3-x^4+e^{2 x} \left (-7+2 x^2\right )}{16+e^{4 x}-8 x-31 x^2+18 x^4+8 x^5+x^6+e^{2 x} \left (8-2 x-8 x^2-2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+16 x+6 x^2-2 x^3-x^4+e^{2 x} \left (-7+2 x^2\right )}{\left (4+e^{2 x}-x-4 x^2-x^3\right )^2} \, dx\\ &=\int \left (-\frac {-7+2 x^2}{-4-e^{2 x}+x+4 x^2+x^3}+\frac {27+9 x-30 x^2-7 x^3+7 x^4+2 x^5}{\left (4+e^{2 x}-x-4 x^2-x^3\right )^2}\right ) \, dx\\ &=-\int \frac {-7+2 x^2}{-4-e^{2 x}+x+4 x^2+x^3} \, dx+\int \frac {27+9 x-30 x^2-7 x^3+7 x^4+2 x^5}{\left (4+e^{2 x}-x-4 x^2-x^3\right )^2} \, dx\\ &=\int \left (\frac {27}{\left (4+e^{2 x}-x-4 x^2-x^3\right )^2}+\frac {9 x}{\left (-4-e^{2 x}+x+4 x^2+x^3\right )^2}-\frac {30 x^2}{\left (-4-e^{2 x}+x+4 x^2+x^3\right )^2}-\frac {7 x^3}{\left (-4-e^{2 x}+x+4 x^2+x^3\right )^2}+\frac {7 x^4}{\left (-4-e^{2 x}+x+4 x^2+x^3\right )^2}+\frac {2 x^5}{\left (-4-e^{2 x}+x+4 x^2+x^3\right )^2}\right ) \, dx-\int \left (\frac {7}{4+e^{2 x}-x-4 x^2-x^3}+\frac {2 x^2}{-4-e^{2 x}+x+4 x^2+x^3}\right ) \, dx\\ &=2 \int \frac {x^5}{\left (-4-e^{2 x}+x+4 x^2+x^3\right )^2} \, dx-2 \int \frac {x^2}{-4-e^{2 x}+x+4 x^2+x^3} \, dx-7 \int \frac {1}{4+e^{2 x}-x-4 x^2-x^3} \, dx-7 \int \frac {x^3}{\left (-4-e^{2 x}+x+4 x^2+x^3\right )^2} \, dx+7 \int \frac {x^4}{\left (-4-e^{2 x}+x+4 x^2+x^3\right )^2} \, dx+9 \int \frac {x}{\left (-4-e^{2 x}+x+4 x^2+x^3\right )^2} \, dx+27 \int \frac {1}{\left (4+e^{2 x}-x-4 x^2-x^3\right )^2} \, dx-30 \int \frac {x^2}{\left (-4-e^{2 x}+x+4 x^2+x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 27, normalized size = 0.87 \begin {gather*} \frac {-3+x+x^2}{-4-e^{2 x}+x+4 x^2+x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 26, normalized size = 0.84 \begin {gather*} \frac {x^{2} + x - 3}{x^{3} + 4 \, x^{2} + x - e^{\left (2 \, x\right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 26, normalized size = 0.84 \begin {gather*} \frac {x^{2} + x - 3}{x^{3} + 4 \, x^{2} + x - e^{\left (2 \, x\right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 27, normalized size = 0.87
method | result | size |
norman | \(\frac {x^{2}+x -3}{x^{3}+4 x^{2}+x -{\mathrm e}^{2 x}-4}\) | \(27\) |
risch | \(\frac {x^{2}+x -3}{x^{3}+4 x^{2}+x -{\mathrm e}^{2 x}-4}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 26, normalized size = 0.84 \begin {gather*} \frac {x^{2} + x - 3}{x^{3} + 4 \, x^{2} + x - e^{\left (2 \, x\right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.84, size = 26, normalized size = 0.84 \begin {gather*} \frac {x^2+x-3}{x-{\mathrm {e}}^{2\,x}+4\,x^2+x^3-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 22, normalized size = 0.71 \begin {gather*} \frac {- x^{2} - x + 3}{- x^{3} - 4 x^{2} - x + e^{2 x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________