Optimal. Leaf size=24 \[ 2+e^{3 \left (-e^3+e^{-2 e^4} (-1+x) x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 30, normalized size of antiderivative = 1.25, number of steps used = 2, number of rules used = 2, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {2244, 2236} \begin {gather*} e^{3 e^{-2 e^4} x^2-3 e^{-2 e^4} x-3 e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2236
Rule 2244
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \exp \left (-e^3 (3+2 e)-3 e^{-2 e^4} x+3 e^{-2 e^4} x^2\right ) (-3+6 x) \, dx\\ &=\exp \left (-3 e^3-3 e^{-2 e^4} x+3 e^{-2 e^4} x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 27, normalized size = 1.12 \begin {gather*} e^{-3 e^{-2 e^4} \left (e^{3+2 e^4}+x-x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.43, size = 37, normalized size = 1.54 \begin {gather*} e^{\left ({\left (3 \, x^{2} - {\left (2 \, e^{4} + 3 \, e^{3}\right )} e^{\left (2 \, e^{4}\right )} - 3 \, x\right )} e^{\left (-2 \, e^{4}\right )} + 2 \, e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 24, normalized size = 1.00 \begin {gather*} e^{\left (3 \, x^{2} e^{\left (-2 \, e^{4}\right )} - 3 \, x e^{\left (-2 \, e^{4}\right )} - 3 \, e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 24, normalized size = 1.00
method | result | size |
gosper | \({\mathrm e}^{-3 \left ({\mathrm e}^{3} {\mathrm e}^{2 \,{\mathrm e}^{4}}-x^{2}+x \right ) {\mathrm e}^{-2 \,{\mathrm e}^{4}}}\) | \(24\) |
risch | \({\mathrm e}^{3 \left (x^{2}-{\mathrm e}^{3+2 \,{\mathrm e}^{4}}-x \right ) {\mathrm e}^{-2 \,{\mathrm e}^{4}}}\) | \(25\) |
derivativedivides | \({\mathrm e}^{\left (-3 \,{\mathrm e}^{3} {\mathrm e}^{2 \,{\mathrm e}^{4}}+3 x^{2}-3 x \right ) {\mathrm e}^{-2 \,{\mathrm e}^{4}}}\) | \(26\) |
norman | \({\mathrm e}^{\left (-3 \,{\mathrm e}^{3} {\mathrm e}^{2 \,{\mathrm e}^{4}}+3 x^{2}-3 x \right ) {\mathrm e}^{-2 \,{\mathrm e}^{4}}}\) | \(26\) |
default | \({\mathrm e}^{-2 \,{\mathrm e}^{4}} {\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{3 \,{\mathrm e}^{-2 \,{\mathrm e}^{4}} x^{2}-3 \,{\mathrm e}^{-2 \,{\mathrm e}^{4}} x -3 \,{\mathrm e}^{3}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 24, normalized size = 1.00 \begin {gather*} e^{\left (3 \, {\left (x^{2} - x - e^{\left (2 \, e^{4} + 3\right )}\right )} e^{\left (-2 \, e^{4}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.26, size = 26, normalized size = 1.08 \begin {gather*} {\mathrm {e}}^{-3\,{\mathrm {e}}^3}\,{\mathrm {e}}^{-3\,x\,{\mathrm {e}}^{-2\,{\mathrm {e}}^4}}\,{\mathrm {e}}^{3\,x^2\,{\mathrm {e}}^{-2\,{\mathrm {e}}^4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 27, normalized size = 1.12 \begin {gather*} e^{\frac {3 x^{2} - 3 x - 3 e^{3} e^{2 e^{4}}}{e^{2 e^{4}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________