Optimal. Leaf size=23 \[ 2+16 \left (e^{4+e^{e+x+\frac {x}{\log (3)}}}-x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 29, normalized size of antiderivative = 1.26, number of steps used = 4, number of rules used = 3, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {12, 2282, 2194} \begin {gather*} 16 e^{3^{\frac {x+e}{\log (3)}} e^{\frac {x}{\log (3)}}+4}-16 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-16 \log (3)+\exp \left (4+e^{\frac {x+(e+x) \log (3)}{\log (3)}}+\frac {x+(e+x) \log (3)}{\log (3)}\right ) (16+16 \log (3))\right ) \, dx}{\log (3)}\\ &=-16 x+\frac {(16 (1+\log (3))) \int \exp \left (4+e^{\frac {x+(e+x) \log (3)}{\log (3)}}+\frac {x+(e+x) \log (3)}{\log (3)}\right ) \, dx}{\log (3)}\\ &=-16 x+16 \operatorname {Subst}\left (\int e^{4+x} \, dx,x,e^{\frac {x+(e+x) \log (3)}{\log (3)}}\right )\\ &=16 e^{4+3^{\frac {e+x}{\log (3)}} e^{\frac {x}{\log (3)}}}-16 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 21, normalized size = 0.91 \begin {gather*} 16 \left (e^{4+e^{e+x+\frac {x}{\log (3)}}}-x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.84, size = 72, normalized size = 3.13 \begin {gather*} -16 \, {\left (x e^{\left (\frac {{\left (x + e\right )} \log \relax (3) + x}{\log \relax (3)}\right )} - e^{\left (\frac {{\left (x + e + 4\right )} \log \relax (3) + e^{\left (\frac {{\left (x + e\right )} \log \relax (3) + x}{\log \relax (3)}\right )} \log \relax (3) + x}{\log \relax (3)}\right )}\right )} e^{\left (-\frac {{\left (x + e\right )} \log \relax (3) + x}{\log \relax (3)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {16 \, {\left ({\left (\log \relax (3) + 1\right )} e^{\left (\frac {{\left (x + e\right )} \log \relax (3) + x}{\log \relax (3)} + e^{\left (\frac {{\left (x + e\right )} \log \relax (3) + x}{\log \relax (3)}\right )} + 4\right )} - \log \relax (3)\right )}}{\log \relax (3)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 25, normalized size = 1.09
method | result | size |
norman | \(-16 x +16 \,{\mathrm e}^{{\mathrm e}^{\frac {\left (x +{\mathrm e}\right ) \ln \relax (3)+x}{\ln \relax (3)}}+4}\) | \(25\) |
risch | \(-16 x +16 \,{\mathrm e}^{{\mathrm e}^{\frac {\ln \relax (3) {\mathrm e}+x \ln \relax (3)+x}{\ln \relax (3)}}+4}\) | \(27\) |
default | \(\frac {\frac {16 \,{\mathrm e}^{{\mathrm e}^{\frac {\left (x +{\mathrm e}\right ) \ln \relax (3)+x}{\ln \relax (3)}}+4} \ln \relax (3)^{2}}{\ln \relax (3)+1}+\frac {16 \,{\mathrm e}^{{\mathrm e}^{\frac {\left (x +{\mathrm e}\right ) \ln \relax (3)+x}{\ln \relax (3)}}+4} \ln \relax (3)}{\ln \relax (3)+1}-16 x \ln \relax (3)}{\ln \relax (3)}\) | \(70\) |
derivativedivides | \(\frac {-16 \ln \relax (3) \ln \left ({\mathrm e}^{\frac {\left (x +{\mathrm e}\right ) \ln \relax (3)+x}{\ln \relax (3)}}\right )+16 \,{\mathrm e}^{{\mathrm e}^{\frac {\left (x +{\mathrm e}\right ) \ln \relax (3)+x}{\ln \relax (3)}}+4}+16 \,{\mathrm e}^{{\mathrm e}^{\frac {\left (x +{\mathrm e}\right ) \ln \relax (3)+x}{\ln \relax (3)}}+4} \ln \relax (3)}{\ln \relax (3)+1}\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 29, normalized size = 1.26 \begin {gather*} -\frac {16 \, {\left (x \log \relax (3) - e^{\left (e^{\left (x + \frac {x}{\log \relax (3)} + e\right )} + 4\right )} \log \relax (3)\right )}}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 22, normalized size = 0.96 \begin {gather*} 16\,{\mathrm {e}}^4\,{\mathrm {e}}^{{\mathrm {e}}^{\frac {x}{\ln \relax (3)}}\,{\mathrm {e}}^{\mathrm {e}}\,{\mathrm {e}}^x}-16\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 22, normalized size = 0.96 \begin {gather*} - 16 x + 16 e^{e^{\frac {x + \left (x + e\right ) \log {\relax (3 )}}{\log {\relax (3 )}}} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________