Optimal. Leaf size=17 \[ \frac {9}{4} e^{e^x} (6-e (2+x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 2288} \begin {gather*} \frac {9}{4} e^{e^x} (6-e (x+2)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int e^{e^x} \left (-9 e+e^x (54+e (-18-9 x))\right ) \, dx\\ &=\frac {9}{4} e^{e^x} (6-e (2+x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 0.94 \begin {gather*} -\frac {9}{4} e^{e^x} (-6+e (2+x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 13, normalized size = 0.76 \begin {gather*} -\frac {9}{4} \, {\left ({\left (x + 2\right )} e - 6\right )} e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.64, size = 30, normalized size = 1.76 \begin {gather*} -\frac {9}{4} \, {\left (x e^{\left (x + e^{x} + 1\right )} + 2 \, e^{\left (x + e^{x} + 1\right )} - 6 \, e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 17, normalized size = 1.00
method | result | size |
risch | \(\frac {\left (-9 x \,{\mathrm e}-18 \,{\mathrm e}+54\right ) {\mathrm e}^{{\mathrm e}^{x}}}{4}\) | \(17\) |
norman | \(\left (-\frac {9 \,{\mathrm e}}{2}+\frac {27}{2}\right ) {\mathrm e}^{{\mathrm e}^{x}}-\frac {9 x \,{\mathrm e} \,{\mathrm e}^{{\mathrm e}^{x}}}{4}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {9}{4} \, {\rm Ei}\left (e^{x}\right ) e - \frac {9}{4} \, x e^{\left (e^{x} + 1\right )} - \frac {9}{2} \, e^{\left (e^{x} + 1\right )} + \frac {27}{2} \, e^{\left (e^{x}\right )} + \frac {9}{4} \, \int e^{\left (e^{x} + 1\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 15, normalized size = 0.88 \begin {gather*} -\frac {9\,{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (2\,\mathrm {e}+x\,\mathrm {e}-6\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 19, normalized size = 1.12 \begin {gather*} \frac {\left (- 9 e x - 18 e + 54\right ) e^{e^{x}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________