Optimal. Leaf size=21 \[ -\frac {10 \log (5) \left (-2+\log \left (-e+\frac {2}{3 x}\right )\right )}{x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.29, antiderivative size = 73, normalized size of antiderivative = 3.48, number of steps used = 9, number of rules used = 6, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {1593, 6742, 77, 2454, 2395, 43} \begin {gather*} -\frac {10 \log (5) \log \left (\frac {2}{3 x}-e\right )}{x^2}+\frac {20 \log (5)}{x^2}+\frac {45}{2} e^2 \log (5) \log \left (3 e-\frac {2}{x}\right )+\frac {45}{2} e^2 \log (5) \log (x)-\frac {45}{2} e^2 \log (5) \log (2-3 e x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 77
Rule 1593
Rule 2395
Rule 2454
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(60-120 e x) \log (5)+(-40+60 e x) \log (5) \log \left (\frac {2-3 e x}{3 x}\right )}{x^3 (-2+3 e x)} \, dx\\ &=\int \left (-\frac {60 (-1+2 e x) \log (5)}{x^3 (-2+3 e x)}+\frac {20 \log (5) \log \left (-e+\frac {2}{3 x}\right )}{x^3}\right ) \, dx\\ &=(20 \log (5)) \int \frac {\log \left (-e+\frac {2}{3 x}\right )}{x^3} \, dx-(60 \log (5)) \int \frac {-1+2 e x}{x^3 (-2+3 e x)} \, dx\\ &=-\left ((20 \log (5)) \operatorname {Subst}\left (\int x \log \left (-e+\frac {2 x}{3}\right ) \, dx,x,\frac {1}{x}\right )\right )-(60 \log (5)) \int \left (\frac {1}{2 x^3}-\frac {e}{4 x^2}-\frac {3 e^2}{8 x}+\frac {9 e^3}{8 (-2+3 e x)}\right ) \, dx\\ &=\frac {15 \log (5)}{x^2}-\frac {15 e \log (5)}{x}-\frac {10 \log (5) \log \left (-e+\frac {2}{3 x}\right )}{x^2}+\frac {45}{2} e^2 \log (5) \log (x)-\frac {45}{2} e^2 \log (5) \log (2-3 e x)+\frac {1}{3} (20 \log (5)) \operatorname {Subst}\left (\int \frac {x^2}{-e+\frac {2 x}{3}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {15 \log (5)}{x^2}-\frac {15 e \log (5)}{x}-\frac {10 \log (5) \log \left (-e+\frac {2}{3 x}\right )}{x^2}+\frac {45}{2} e^2 \log (5) \log (x)-\frac {45}{2} e^2 \log (5) \log (2-3 e x)+\frac {1}{3} (20 \log (5)) \operatorname {Subst}\left (\int \left (\frac {9 e}{4}-\frac {27 e^2}{4 (3 e-2 x)}+\frac {3 x}{2}\right ) \, dx,x,\frac {1}{x}\right )\\ &=\frac {20 \log (5)}{x^2}+\frac {45}{2} e^2 \log (5) \log \left (3 e-\frac {2}{x}\right )-\frac {10 \log (5) \log \left (-e+\frac {2}{3 x}\right )}{x^2}+\frac {45}{2} e^2 \log (5) \log (x)-\frac {45}{2} e^2 \log (5) \log (2-3 e x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.07, size = 67, normalized size = 3.19 \begin {gather*} 20 \log (5) \left (\frac {1}{x^2}+\frac {9}{8} e^2 \log \left (3 e-\frac {2}{x}\right )-\frac {\log \left (-e+\frac {2}{3 x}\right )}{2 x^2}+\frac {9}{8} e^2 \log (x)-\frac {9}{8} e^2 \log (2-3 e x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 26, normalized size = 1.24 \begin {gather*} -\frac {10 \, {\left (\log \relax (5) \log \left (-\frac {3 \, x e - 2}{3 \, x}\right ) - 2 \, \log \relax (5)\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.50, size = 32, normalized size = 1.52 \begin {gather*} \frac {10 \, {\left (\log \relax (5) \log \relax (3) - \log \relax (5) \log \left (-3 \, x e + 2\right ) + \log \relax (5) \log \relax (x) + 2 \, \log \relax (5)\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.47, size = 27, normalized size = 1.29
method | result | size |
norman | \(\frac {-10 \ln \relax (5) \ln \left (\frac {-3 x \,{\mathrm e}+2}{3 x}\right )+20 \ln \relax (5)}{x^{2}}\) | \(27\) |
risch | \(-\frac {10 \ln \relax (5) \ln \left (\frac {-3 x \,{\mathrm e}+2}{3 x}\right )}{x^{2}}+\frac {20 \ln \relax (5)}{x^{2}}\) | \(29\) |
derivativedivides | \(-45 \ln \relax (5) \left (\frac {\left (\frac {2}{3 x}-{\mathrm e}\right )^{2} \ln \left (\frac {2}{3 x}-{\mathrm e}\right )}{2}-\frac {\left (\frac {2}{3 x}-{\mathrm e}\right )^{2}}{4}\right )+45 \,{\mathrm e} \ln \relax (5) \left (\frac {2}{3 x}-{\mathrm e}\right )+\frac {135 \ln \relax (5) \left (\frac {2}{3 x}-{\mathrm e}\right )^{2}}{4}-45 \,{\mathrm e} \ln \relax (5) \left (\left (\frac {2}{3 x}-{\mathrm e}\right ) \ln \left (\frac {2}{3 x}-{\mathrm e}\right )+{\mathrm e}-\frac {2}{3 x}\right )-\frac {45 \,{\mathrm e}^{2} \ln \relax (5) \ln \left (\frac {2}{3 x}-{\mathrm e}\right )}{2}\) | \(133\) |
default | \(-45 \ln \relax (5) \left (\frac {\left (\frac {2}{3 x}-{\mathrm e}\right )^{2} \ln \left (\frac {2}{3 x}-{\mathrm e}\right )}{2}-\frac {\left (\frac {2}{3 x}-{\mathrm e}\right )^{2}}{4}\right )+45 \,{\mathrm e} \ln \relax (5) \left (\frac {2}{3 x}-{\mathrm e}\right )+\frac {135 \ln \relax (5) \left (\frac {2}{3 x}-{\mathrm e}\right )^{2}}{4}-45 \,{\mathrm e} \ln \relax (5) \left (\left (\frac {2}{3 x}-{\mathrm e}\right ) \ln \left (\frac {2}{3 x}-{\mathrm e}\right )+{\mathrm e}-\frac {2}{3 x}\right )-\frac {45 \,{\mathrm e}^{2} \ln \relax (5) \ln \left (\frac {2}{3 x}-{\mathrm e}\right )}{2}\) | \(133\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.84, size = 295, normalized size = 14.05 \begin {gather*} 15 \, {\left (3 \, e \log \left (3 \, x e - 2\right ) - 3 \, e \log \relax (x) + \frac {2}{x}\right )} e \log \relax (5) \log \left (\frac {2}{3 \, x} - e\right ) - 30 \, {\left (3 \, e \log \left (3 \, x e - 2\right ) - 3 \, e \log \relax (x) + \frac {2}{x}\right )} e \log \relax (5) - 5 \, {\left (9 \, e^{2} \log \left (3 \, x e - 2\right ) - 9 \, e^{2} \log \relax (x) + \frac {2 \, {\left (3 \, x e + 1\right )}}{x^{2}}\right )} \log \relax (5) \log \left (\frac {2}{3 \, x} - e\right ) + \frac {15}{2} \, {\left (9 \, e^{2} \log \left (3 \, x e - 2\right ) - 9 \, e^{2} \log \relax (x) + \frac {2 \, {\left (3 \, x e + 1\right )}}{x^{2}}\right )} \log \relax (5) - \frac {15 \, {\left (3 \, x e \log \left (3 \, x e - 2\right )^{2} + 3 \, x e \log \relax (x)^{2} - 6 \, x e \log \relax (x) - 6 \, {\left (x e \log \relax (x) - x e\right )} \log \left (3 \, x e - 2\right ) + 4\right )} e \log \relax (5)}{2 \, x} + \frac {5 \, {\left (9 \, x^{2} e^{2} \log \left (3 \, x e - 2\right )^{2} + 9 \, x^{2} e^{2} \log \relax (x)^{2} - 27 \, x^{2} e^{2} \log \relax (x) + 18 \, x e - 9 \, {\left (2 \, x^{2} e^{2} \log \relax (x) - 3 \, x^{2} e^{2}\right )} \log \left (3 \, x e - 2\right ) + 2\right )} \log \relax (5)}{2 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.15, size = 23, normalized size = 1.10 \begin {gather*} -\frac {5\,\ln \relax (5)\,\left (2\,\ln \left (-\frac {x\,\mathrm {e}-\frac {2}{3}}{x}\right )-4\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 27, normalized size = 1.29 \begin {gather*} - \frac {10 \log {\relax (5 )} \log {\left (\frac {- e x + \frac {2}{3}}{x} \right )}}{x^{2}} + \frac {20 \log {\relax (5 )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________