Optimal. Leaf size=38 \[ -2-x+\frac {2 x}{5-x}+\left (-e^x+5 \log \left (\frac {1}{2} \left (x+\frac {\log (x)}{x}\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 15.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-15 x^3+10 x^4-x^5+e^x \left (-250+100 x-260 x^2+100 x^3-10 x^4\right )+e^{2 x} \left (50 x^3-20 x^4+2 x^5\right )+\left (-15 x+10 x^2-x^3+e^x \left (250-100 x+10 x^2\right )+e^{2 x} \left (50 x-20 x^2+2 x^3\right )\right ) \log (x)+\left (1250-500 x+1300 x^2-500 x^3+50 x^4+e^x \left (-250 x^3+100 x^4-10 x^5\right )+\left (-1250+500 x-50 x^2+e^x \left (-250 x+100 x^2-10 x^3\right )\right ) \log (x)\right ) \log \left (\frac {x^2+\log (x)}{2 x}\right )}{25 x^3-10 x^4+x^5+\left (25 x-10 x^2+x^3\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-15 x^3+10 x^4-x^5+e^x \left (-250+100 x-260 x^2+100 x^3-10 x^4\right )+e^{2 x} \left (50 x^3-20 x^4+2 x^5\right )+\left (-15 x+10 x^2-x^3+e^x \left (250-100 x+10 x^2\right )+e^{2 x} \left (50 x-20 x^2+2 x^3\right )\right ) \log (x)+\left (1250-500 x+1300 x^2-500 x^3+50 x^4+e^x \left (-250 x^3+100 x^4-10 x^5\right )+\left (-1250+500 x-50 x^2+e^x \left (-250 x+100 x^2-10 x^3\right )\right ) \log (x)\right ) \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(5-x)^2 x \left (x^2+\log (x)\right )} \, dx\\ &=\int \left (2 e^{2 x}-\frac {15 x^2}{(-5+x)^2 \left (x^2+\log (x)\right )}+\frac {10 x^3}{(-5+x)^2 \left (x^2+\log (x)\right )}-\frac {x^4}{(-5+x)^2 \left (x^2+\log (x)\right )}-\frac {15 \log (x)}{(-5+x)^2 \left (x^2+\log (x)\right )}+\frac {10 x \log (x)}{(-5+x)^2 \left (x^2+\log (x)\right )}-\frac {x^2 \log (x)}{(-5+x)^2 \left (x^2+\log (x)\right )}-\frac {500 \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )}+\frac {1250 \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 x \left (x^2+\log (x)\right )}+\frac {1300 x \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )}-\frac {500 x^2 \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )}+\frac {50 x^3 \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )}+\frac {500 \log (x) \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )}-\frac {1250 \log (x) \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 x \left (x^2+\log (x)\right )}-\frac {50 x \log (x) \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )}-\frac {10 e^x \left (1+x^2-\log (x)+x^3 \log \left (\frac {x^2+\log (x)}{2 x}\right )+x \log (x) \log \left (\frac {x^2+\log (x)}{2 x}\right )\right )}{x \left (x^2+\log (x)\right )}\right ) \, dx\\ &=2 \int e^{2 x} \, dx+10 \int \frac {x^3}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx+10 \int \frac {x \log (x)}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx-10 \int \frac {e^x \left (1+x^2-\log (x)+x^3 \log \left (\frac {x^2+\log (x)}{2 x}\right )+x \log (x) \log \left (\frac {x^2+\log (x)}{2 x}\right )\right )}{x \left (x^2+\log (x)\right )} \, dx-15 \int \frac {x^2}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx-15 \int \frac {\log (x)}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx+50 \int \frac {x^3 \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx-50 \int \frac {x \log (x) \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx-500 \int \frac {\log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx-500 \int \frac {x^2 \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx+500 \int \frac {\log (x) \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx+1250 \int \frac {\log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 x \left (x^2+\log (x)\right )} \, dx-1250 \int \frac {\log (x) \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 x \left (x^2+\log (x)\right )} \, dx+1300 \int \frac {x \log \left (\frac {x^2+\log (x)}{2 x}\right )}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx-\int \frac {x^4}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx-\int \frac {x^2 \log (x)}{(-5+x)^2 \left (x^2+\log (x)\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 53, normalized size = 1.39 \begin {gather*} e^{2 x}-\frac {10}{-5+x}-x-10 e^x \log \left (\frac {x^2+\log (x)}{2 x}\right )+25 \log ^2\left (\frac {x^2+\log (x)}{2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 62, normalized size = 1.63 \begin {gather*} -\frac {10 \, {\left (x - 5\right )} e^{x} \log \left (\frac {x^{2} + \log \relax (x)}{2 \, x}\right ) - 25 \, {\left (x - 5\right )} \log \left (\frac {x^{2} + \log \relax (x)}{2 \, x}\right )^{2} + x^{2} - {\left (x - 5\right )} e^{\left (2 \, x\right )} - 5 \, x + 10}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 172, normalized size = 4.53 \begin {gather*} \frac {10 \, x e^{x} \log \relax (2) - 10 \, x e^{x} \log \left (x^{2} + \log \relax (x)\right ) - 50 \, x \log \relax (2) \log \left (x^{2} + \log \relax (x)\right ) + 25 \, x \log \left (x^{2} + \log \relax (x)\right )^{2} + 10 \, x e^{x} \log \relax (x) + 50 \, x \log \relax (2) \log \relax (x) - 50 \, x \log \left (x^{2} + \log \relax (x)\right ) \log \relax (x) + 25 \, x \log \relax (x)^{2} - x^{2} + x e^{\left (2 \, x\right )} - 50 \, e^{x} \log \relax (2) + 50 \, e^{x} \log \left (x^{2} + \log \relax (x)\right ) + 250 \, \log \relax (2) \log \left (x^{2} + \log \relax (x)\right ) - 125 \, \log \left (x^{2} + \log \relax (x)\right )^{2} - 50 \, e^{x} \log \relax (x) - 250 \, \log \relax (2) \log \relax (x) + 250 \, \log \left (x^{2} + \log \relax (x)\right ) \log \relax (x) - 125 \, \log \relax (x)^{2} + 5 \, x - 5 \, e^{\left (2 \, x\right )} - 10}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.45, size = 1971, normalized size = 51.87
method | result | size |
risch | \(\text {Expression too large to display}\) | \(1971\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.82, size = 111, normalized size = 2.92 \begin {gather*} \frac {25 \, {\left (x - 5\right )} \log \left (x^{2} + \log \relax (x)\right )^{2} + 25 \, {\left (x - 5\right )} \log \relax (x)^{2} - x^{2} + {\left (x - 5\right )} e^{\left (2 \, x\right )} + 10 \, {\left (x \log \relax (2) + {\left (x - 5\right )} \log \relax (x) - 5 \, \log \relax (2)\right )} e^{x} - 10 \, {\left ({\left (x - 5\right )} e^{x} + 5 \, x \log \relax (2) + 5 \, {\left (x - 5\right )} \log \relax (x) - 25 \, \log \relax (2)\right )} \log \left (x^{2} + \log \relax (x)\right ) + 50 \, {\left (x \log \relax (2) - 5 \, \log \relax (2)\right )} \log \relax (x) + 5 \, x - 10}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 53, normalized size = 1.39 \begin {gather*} {\mathrm {e}}^{2\,x}-x-\frac {10}{x-5}-10\,{\mathrm {e}}^x\,\ln \left (\frac {\frac {\ln \relax (x)}{2}+\frac {x^2}{2}}{x}\right )+25\,{\ln \left (\frac {\frac {\ln \relax (x)}{2}+\frac {x^2}{2}}{x}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.96, size = 46, normalized size = 1.21 \begin {gather*} - x + e^{2 x} - 10 e^{x} \log {\left (\frac {\frac {x^{2}}{2} + \frac {\log {\relax (x )}}{2}}{x} \right )} + 25 \log {\left (\frac {\frac {x^{2}}{2} + \frac {\log {\relax (x )}}{2}}{x} \right )}^{2} - \frac {10}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________