Optimal. Leaf size=23 \[ \frac {5}{\frac {1}{2} (-1+x)+x+e^{-\log ^2(x)} x} \]
________________________________________________________________________________________
Rubi [F] time = 4.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-30 e^{2 \log ^2(x)}+e^{\log ^2(x)} (-20+40 \log (x))}{4 x^2+e^{2 \log ^2(x)} \left (1-6 x+9 x^2\right )+e^{\log ^2(x)} \left (-4 x+12 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 e^{\log ^2(x)} \left (-2-3 e^{\log ^2(x)}+4 \log (x)\right )}{\left (2 x+e^{\log ^2(x)} (-1+3 x)\right )^2} \, dx\\ &=10 \int \frac {e^{\log ^2(x)} \left (-2-3 e^{\log ^2(x)}+4 \log (x)\right )}{\left (2 x+e^{\log ^2(x)} (-1+3 x)\right )^2} \, dx\\ &=10 \int \left (-\frac {3 e^{\log ^2(x)}}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )}+\frac {2 e^{\log ^2(x)} (1-2 \log (x)+6 x \log (x))}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2}\right ) \, dx\\ &=20 \int \frac {e^{\log ^2(x)} (1-2 \log (x)+6 x \log (x))}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2} \, dx-30 \int \frac {e^{\log ^2(x)}}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )} \, dx\\ &=20 \int \left (\frac {e^{\log ^2(x)}}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2}-\frac {2 e^{\log ^2(x)} \log (x)}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2}+\frac {6 e^{\log ^2(x)} x \log (x)}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2}\right ) \, dx-30 \int \frac {e^{\log ^2(x)}}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )} \, dx\\ &=20 \int \frac {e^{\log ^2(x)}}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2} \, dx-30 \int \frac {e^{\log ^2(x)}}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )} \, dx-40 \int \frac {e^{\log ^2(x)} \log (x)}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2} \, dx+120 \int \frac {e^{\log ^2(x)} x \log (x)}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2} \, dx\\ &=20 \int \frac {e^{\log ^2(x)}}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2} \, dx-30 \int \frac {e^{\log ^2(x)}}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )} \, dx-40 \int \frac {e^{\log ^2(x)} \log (x)}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2} \, dx+120 \int \left (\frac {e^{\log ^2(x)} \log (x)}{3 \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2}+\frac {e^{\log ^2(x)} \log (x)}{3 (-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2}\right ) \, dx\\ &=20 \int \frac {e^{\log ^2(x)}}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2} \, dx-30 \int \frac {e^{\log ^2(x)}}{(-1+3 x) \left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )} \, dx+40 \int \frac {e^{\log ^2(x)} \log (x)}{\left (-e^{\log ^2(x)}+2 x+3 e^{\log ^2(x)} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 26, normalized size = 1.13 \begin {gather*} \frac {10 e^{\log ^2(x)}}{2 x+e^{\log ^2(x)} (-1+3 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 24, normalized size = 1.04 \begin {gather*} \frac {10 \, e^{\left (\log \relax (x)^{2}\right )}}{{\left (3 \, x - 1\right )} e^{\left (\log \relax (x)^{2}\right )} + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 28, normalized size = 1.22 \begin {gather*} \frac {10 \, e^{\left (\log \relax (x)^{2}\right )}}{3 \, x e^{\left (\log \relax (x)^{2}\right )} + 2 \, x - e^{\left (\log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 35, normalized size = 1.52
method | result | size |
norman | \(\frac {20 x +30 \,{\mathrm e}^{\ln \relax (x )^{2}} x}{3 \,{\mathrm e}^{\ln \relax (x )^{2}} x -{\mathrm e}^{\ln \relax (x )^{2}}+2 x}\) | \(35\) |
risch | \(\frac {10}{3 \left (x -\frac {1}{3}\right )}-\frac {20 x}{\left (3 x -1\right ) \left (3 \,{\mathrm e}^{\ln \relax (x )^{2}} x -{\mathrm e}^{\ln \relax (x )^{2}}+2 x \right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.92, size = 24, normalized size = 1.04 \begin {gather*} \frac {10 \, e^{\left (\log \relax (x)^{2}\right )}}{{\left (3 \, x - 1\right )} e^{\left (\log \relax (x)^{2}\right )} + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.00, size = 28, normalized size = 1.22 \begin {gather*} \frac {10\,{\mathrm {e}}^{{\ln \relax (x)}^2}}{2\,x-{\mathrm {e}}^{{\ln \relax (x)}^2}+3\,x\,{\mathrm {e}}^{{\ln \relax (x)}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 34, normalized size = 1.48 \begin {gather*} - \frac {20 x}{6 x^{2} - 2 x + \left (9 x^{2} - 6 x + 1\right ) e^{\log {\relax (x )}^{2}}} + \frac {30}{9 x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________