Optimal. Leaf size=22 \[ e^4 \log \left (\frac {169}{16}+x+\frac {1}{256 x^2 \log ^2(\log (2))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 35, normalized size of antiderivative = 1.59, number of steps used = 3, number of rules used = 2, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {2074, 1587} \begin {gather*} e^4 \log \left (256 x^3 \log ^2(\log (2))+2704 x^2 \log ^2(\log (2))+1\right )-2 e^4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 e^4}{x}+\frac {32 e^4 x (169+24 x) \log ^2(\log (2))}{1+2704 x^2 \log ^2(\log (2))+256 x^3 \log ^2(\log (2))}\right ) \, dx\\ &=-2 e^4 \log (x)+\left (32 e^4 \log ^2(\log (2))\right ) \int \frac {x (169+24 x)}{1+2704 x^2 \log ^2(\log (2))+256 x^3 \log ^2(\log (2))} \, dx\\ &=-2 e^4 \log (x)+e^4 \log \left (1+2704 x^2 \log ^2(\log (2))+256 x^3 \log ^2(\log (2))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 32, normalized size = 1.45 \begin {gather*} e^4 \left (-2 \log (x)+\log \left (1+2704 x^2 \log ^2(\log (2))+256 x^3 \log ^2(\log (2))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 31, normalized size = 1.41 \begin {gather*} e^{4} \log \left (16 \, {\left (16 \, x^{3} + 169 \, x^{2}\right )} \log \left (\log \relax (2)\right )^{2} + 1\right ) - 2 \, e^{4} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 35, normalized size = 1.59 \begin {gather*} e^{4} \log \left ({\left | 256 \, x^{3} \log \left (\log \relax (2)\right )^{2} + 2704 \, x^{2} \log \left (\log \relax (2)\right )^{2} + 1 \right |}\right ) - 2 \, e^{4} \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 34, normalized size = 1.55
method | result | size |
norman | \({\mathrm e}^{4} \ln \left (256 x^{3} \ln \left (\ln \relax (2)\right )^{2}+2704 x^{2} \ln \left (\ln \relax (2)\right )^{2}+1\right )-2 \,{\mathrm e}^{4} \ln \relax (x )\) | \(34\) |
risch | \(-2 \,{\mathrm e}^{4} \ln \relax (x )+{\mathrm e}^{4} \ln \left (-256 x^{3} \ln \left (\ln \relax (2)\right )^{2}-2704 x^{2} \ln \left (\ln \relax (2)\right )^{2}-1\right )\) | \(34\) |
default | \(2 \,{\mathrm e}^{4} \left (-\ln \relax (x )+\frac {\ln \left (256 x^{3} \ln \left (\ln \relax (2)\right )^{2}+2704 x^{2} \ln \left (\ln \relax (2)\right )^{2}+1\right )}{2}\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 33, normalized size = 1.50 \begin {gather*} e^{4} \log \left (256 \, x^{3} \log \left (\log \relax (2)\right )^{2} + 2704 \, x^{2} \log \left (\log \relax (2)\right )^{2} + 1\right ) - 2 \, e^{4} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 33, normalized size = 1.50 \begin {gather*} {\mathrm {e}}^4\,\ln \left (256\,{\ln \left (\ln \relax (2)\right )}^2\,x^3+2704\,{\ln \left (\ln \relax (2)\right )}^2\,x^2+1\right )-2\,{\mathrm {e}}^4\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.72, size = 32, normalized size = 1.45 \begin {gather*} - 2 e^{4} \log {\relax (x )} + e^{4} \log {\left (x^{3} + \frac {169 x^{2}}{16} + \frac {1}{256 \log {\left (\log {\relax (2 )} \right )}^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________