Optimal. Leaf size=27 \[ \frac {5}{\log \left (\frac {3}{x}-x+\frac {x}{1-e^x}+\log (3)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 12.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {15+e^{2 x} \left (15+5 x^2\right )+e^x \left (-30-5 x^2-5 x^3\right )}{\left (3 x+x^2 \log (3)+e^x \left (-6 x+x^3-2 x^2 \log (3)\right )+e^{2 x} \left (3 x-x^3+x^2 \log (3)\right )\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{-x+e^x x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15+e^{2 x} \left (15+5 x^2\right )+e^x \left (-30-5 x^2-5 x^3\right )}{\left (1-e^x\right ) x \left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{-x+e^x x}\right )} \, dx\\ &=\int \left (\frac {5}{\left (-1+e^x\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}-\frac {5 \left (3+x^2\right )}{x \left (-3+x^2-x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}+\frac {5 \left (9-6 x (1-\log (3))-x^3 \log (3)-x^2 \left (3+\log (3)-\log ^2(3)\right )\right )}{\left (3-x^2+x \log (3)\right ) \left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}\right ) \, dx\\ &=5 \int \frac {1}{\left (-1+e^x\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx-5 \int \frac {3+x^2}{x \left (-3+x^2-x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+5 \int \frac {9-6 x (1-\log (3))-x^3 \log (3)-x^2 \left (3+\log (3)-\log ^2(3)\right )}{\left (3-x^2+x \log (3)\right ) \left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx\\ &=-\left (5 \int \left (-\frac {1}{x \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}+\frac {2 x-\log (3)}{\left (-3+x^2-x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}\right ) \, dx\right )+5 \int \left (\frac {3 \left (1+\frac {\log (3)}{3}\right )}{\left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}+\frac {x \log (3)}{\left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}+\frac {-x \left (6+\log ^2(3)\right )-\log (27)}{\left (3-x^2+x \log (3)\right ) \left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}\right ) \, dx+5 \int \frac {1}{\left (-1+e^x\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx\\ &=5 \int \frac {1}{\left (-1+e^x\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+5 \int \frac {1}{x \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx-5 \int \frac {2 x-\log (3)}{\left (-3+x^2-x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+5 \int \frac {-x \left (6+\log ^2(3)\right )-\log (27)}{\left (3-x^2+x \log (3)\right ) \left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+(5 \log (3)) \int \frac {x}{\left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+(5 (3+\log (3))) \int \frac {1}{\left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx\\ &=-\left (5 \int \left (\frac {2 x}{\left (-3+x^2-x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}+\frac {\log (3)}{\left (3-x^2+x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}\right ) \, dx\right )+5 \int \left (\frac {x \left (6+\log ^2(3)\right )}{\left (-3+x^2-x \log (3)\right ) \left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}+\frac {\log (27)}{\left (-3+x^2-x \log (3)\right ) \left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )}\right ) \, dx+5 \int \frac {1}{\left (-1+e^x\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+5 \int \frac {1}{x \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+(5 \log (3)) \int \frac {x}{\left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+(5 (3+\log (3))) \int \frac {1}{\left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx\\ &=5 \int \frac {1}{\left (-1+e^x\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+5 \int \frac {1}{x \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx-10 \int \frac {x}{\left (-3+x^2-x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx-(5 \log (3)) \int \frac {1}{\left (3-x^2+x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+(5 \log (3)) \int \frac {x}{\left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+(5 (3+\log (3))) \int \frac {1}{\left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+\left (5 \left (6+\log ^2(3)\right )\right ) \int \frac {x}{\left (-3+x^2-x \log (3)\right ) \left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx+(5 \log (27)) \int \frac {1}{\left (-3+x^2-x \log (3)\right ) \left (3-3 e^x+e^x x^2+x \log (3)-e^x x \log (3)\right ) \log ^2\left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 38, normalized size = 1.41 \begin {gather*} \frac {5}{\log \left (\frac {-3-x \log (3)+e^x \left (3-x^2+x \log (3)\right )}{\left (-1+e^x\right ) x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 36, normalized size = 1.33 \begin {gather*} \frac {5}{\log \left (-\frac {{\left (x^{2} - x \log \relax (3) - 3\right )} e^{x} + x \log \relax (3) + 3}{x e^{x} - x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.42, size = 41, normalized size = 1.52 \begin {gather*} \frac {5}{\log \left (-x^{2} e^{x} + x e^{x} \log \relax (3) - x \log \relax (3) + 3 \, e^{x} - 3\right ) - \log \left (x e^{x} - x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.18, size = 483, normalized size = 17.89
method | result | size |
risch | \(\frac {10 i}{\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}{{\mathrm e}^{x}-1}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}{x \left ({\mathrm e}^{x}-1\right )}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}{x \left ({\mathrm e}^{x}-1\right )}\right )^{2}+\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}-1}\right ) \mathrm {csgn}\left (i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}{{\mathrm e}^{x}-1}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}-1}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}{{\mathrm e}^{x}-1}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}{{\mathrm e}^{x}-1}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}{{\mathrm e}^{x}-1}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}{{\mathrm e}^{x}-1}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}{x \left ({\mathrm e}^{x}-1\right )}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}{x \left ({\mathrm e}^{x}-1\right )}\right )^{3}-2 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{x}-1\right )+2 i \ln \left (\ln \relax (3) \left ({\mathrm e}^{x}-1\right ) x -{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{x}-3\right )}\) | \(483\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 2.21, size = 38, normalized size = 1.41 \begin {gather*} \frac {5}{\log \left (-{\left (x^{2} - x \log \relax (3) - 3\right )} e^{x} - x \log \relax (3) - 3\right ) - \log \relax (x) - \log \left (e^{x} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.11, size = 36, normalized size = 1.33 \begin {gather*} \frac {5}{\ln \left (\frac {x\,\ln \relax (3)-{\mathrm {e}}^x\,\left (-x^2+\ln \relax (3)\,x+3\right )+3}{x-x\,{\mathrm {e}}^x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 29, normalized size = 1.07 \begin {gather*} \frac {5}{\log {\left (\frac {- x \log {\relax (3 )} + \left (- x^{2} + x \log {\relax (3 )} + 3\right ) e^{x} - 3}{x e^{x} - x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________