Optimal. Leaf size=30 \[ 5+x+\frac {e^{-\frac {10}{2+e^x}} x}{x^2+(2-x) \log (4)} \]
________________________________________________________________________________________
Rubi [F] time = 38.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {10}{2+e^x}} \left (-4 x^2+8 \log (4)+e^{2 x} \left (-x^2+2 \log (4)\right )+e^x \left (-4 x^2+10 x^3+\left (8+20 x-10 x^2\right ) \log (4)\right )+e^{\frac {10}{2+e^x}} \left (4 x^4+\left (16 x^2-8 x^3\right ) \log (4)+\left (16-16 x+4 x^2\right ) \log ^2(4)+e^{2 x} \left (x^4+\left (4 x^2-2 x^3\right ) \log (4)+\left (4-4 x+x^2\right ) \log ^2(4)\right )+e^x \left (4 x^4+\left (16 x^2-8 x^3\right ) \log (4)+\left (16-16 x+4 x^2\right ) \log ^2(4)\right )\right )\right )}{4 x^4+\left (16 x^2-8 x^3\right ) \log (4)+\left (16-16 x+4 x^2\right ) \log ^2(4)+e^{2 x} \left (x^4+\left (4 x^2-2 x^3\right ) \log (4)+\left (4-4 x+x^2\right ) \log ^2(4)\right )+e^x \left (4 x^4+\left (16 x^2-8 x^3\right ) \log (4)+\left (16-16 x+4 x^2\right ) \log ^2(4)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {10}{2+e^x}} \left (-4 x^2-e^{2 x} \left (x^2-2 \log (4)\right )+8 \log (4)+e^x \left (10 x^3+8 \log (4)+20 x \log (4)-2 x^2 (2+5 \log (4))\right )+e^{\frac {10}{2+e^x}} \left (2+e^x\right )^2 \left (x^2-x \log (4)+\log (16)\right )^2\right )}{\left (2+e^x\right )^2 \left (x^2-x \log (4)+\log (16)\right )^2} \, dx\\ &=\int \left (-\frac {20 e^{-\frac {10}{2+e^x}} x}{\left (2+e^x\right )^2 \left (x^2-x \log (4)+\log (16)\right )}+\frac {10 e^{-\frac {10}{2+e^x}} x}{\left (2+e^x\right ) \left (x^2-x \log (4)+\log (16)\right )}+\frac {e^{-\frac {10}{2+e^x}} \left (-x^2+e^{\frac {10}{2+e^x}} x^4-2 e^{\frac {10}{2+e^x}} x^3 \log (4)+\log (16)+e^{\frac {10}{2+e^x}} \log ^2(16)-e^{\frac {10}{2+e^x}} x \log ^2(16)+e^{\frac {10}{2+e^x}} x^2 \log ^2(4) \left (1+\frac {\log (256)}{\log ^2(4)}\right )\right )}{\left (x^2-x \log (4)+\log (16)\right )^2}\right ) \, dx\\ &=10 \int \frac {e^{-\frac {10}{2+e^x}} x}{\left (2+e^x\right ) \left (x^2-x \log (4)+\log (16)\right )} \, dx-20 \int \frac {e^{-\frac {10}{2+e^x}} x}{\left (2+e^x\right )^2 \left (x^2-x \log (4)+\log (16)\right )} \, dx+\int \frac {e^{-\frac {10}{2+e^x}} \left (-x^2+e^{\frac {10}{2+e^x}} x^4-2 e^{\frac {10}{2+e^x}} x^3 \log (4)+\log (16)+e^{\frac {10}{2+e^x}} \log ^2(16)-e^{\frac {10}{2+e^x}} x \log ^2(16)+e^{\frac {10}{2+e^x}} x^2 \log ^2(4) \left (1+\frac {\log (256)}{\log ^2(4)}\right )\right )}{\left (x^2-x \log (4)+\log (16)\right )^2} \, dx\\ &=10 \int \left (\frac {e^{-\frac {10}{2+e^x}} \left (1-\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )}{\left (2+e^x\right ) \left (2 x-\log (4)-i \sqrt {-\log ^2(4)+4 \log (16)}\right )}+\frac {e^{-\frac {10}{2+e^x}} \left (1+\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )}{\left (2+e^x\right ) \left (2 x-\log (4)+i \sqrt {-\log ^2(4)+4 \log (16)}\right )}\right ) \, dx-20 \int \left (\frac {e^{-\frac {10}{2+e^x}} \left (1-\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )}{\left (2+e^x\right )^2 \left (2 x-\log (4)-i \sqrt {-\log ^2(4)+4 \log (16)}\right )}+\frac {e^{-\frac {10}{2+e^x}} \left (1+\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )}{\left (2+e^x\right )^2 \left (2 x-\log (4)+i \sqrt {-\log ^2(4)+4 \log (16)}\right )}\right ) \, dx+\int \frac {x^4-e^{-\frac {10}{2+e^x}} \left (x^2-\log (16)\right )-x^3 \log (16)+\log ^2(16)-x \log ^2(16)+x^2 \left (\log ^2(4)+\log (256)\right )}{x^4-x^3 \log (16)+\log ^2(16)-x \log ^2(16)+x^2 \left (\log ^2(4)+\log (256)\right )} \, dx\\ &=\left (10 \left (1-\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )\right ) \int \frac {e^{-\frac {10}{2+e^x}}}{\left (2+e^x\right ) \left (2 x-\log (4)-i \sqrt {-\log ^2(4)+4 \log (16)}\right )} \, dx-\left (20 \left (1-\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )\right ) \int \frac {e^{-\frac {10}{2+e^x}}}{\left (2+e^x\right )^2 \left (2 x-\log (4)-i \sqrt {-\log ^2(4)+4 \log (16)}\right )} \, dx+\left (10 \left (1+\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )\right ) \int \frac {e^{-\frac {10}{2+e^x}}}{\left (2+e^x\right ) \left (2 x-\log (4)+i \sqrt {-\log ^2(4)+4 \log (16)}\right )} \, dx-\left (20 \left (1+\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )\right ) \int \frac {e^{-\frac {10}{2+e^x}}}{\left (2+e^x\right )^2 \left (2 x-\log (4)+i \sqrt {-\log ^2(4)+4 \log (16)}\right )} \, dx+\int \left (\frac {x^3 \log (16)}{-x^4+x^3 \log (16)-\log ^2(16)+x \log ^2(16)-x^2 \left (\log ^2(4)+\log (256)\right )}+\frac {x \log ^2(16)}{-x^4+x^3 \log (16)-\log ^2(16)+x \log ^2(16)-x^2 \left (\log ^2(4)+\log (256)\right )}+\frac {x^4}{x^4-x^3 \log (16)+\log ^2(16)-x \log ^2(16)+x^2 \left (\log ^2(4)+\log (256)\right )}+\frac {\log ^2(16)}{x^4-x^3 \log (16)+\log ^2(16)-x \log ^2(16)+x^2 \left (\log ^2(4)+\log (256)\right )}+\frac {e^{-\frac {10}{2+e^x}} \left (-x^2+\log (16)\right )}{x^4-x^3 \log (16)+\log ^2(16)-x \log ^2(16)+x^2 \left (\log ^2(4)+\log (256)\right )}+\frac {x^2 \left (\log ^2(4)+\log (256)\right )}{x^4-x^3 \log (16)+\log ^2(16)-x \log ^2(16)+x^2 \left (\log ^2(4)+\log (256)\right )}\right ) \, dx\\ &=\log (16) \int \frac {x^3}{-x^4+x^3 \log (16)-\log ^2(16)+x \log ^2(16)-x^2 \left (\log ^2(4)+\log (256)\right )} \, dx+\log ^2(16) \int \frac {x}{-x^4+x^3 \log (16)-\log ^2(16)+x \log ^2(16)-x^2 \left (\log ^2(4)+\log (256)\right )} \, dx+\log ^2(16) \int \frac {1}{x^4-x^3 \log (16)+\log ^2(16)-x \log ^2(16)+x^2 \left (\log ^2(4)+\log (256)\right )} \, dx+\left (10 \left (1-\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )\right ) \int \frac {e^{-\frac {10}{2+e^x}}}{\left (2+e^x\right ) \left (2 x-\log (4)-i \sqrt {-\log ^2(4)+4 \log (16)}\right )} \, dx-\left (20 \left (1-\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )\right ) \int \frac {e^{-\frac {10}{2+e^x}}}{\left (2+e^x\right )^2 \left (2 x-\log (4)-i \sqrt {-\log ^2(4)+4 \log (16)}\right )} \, dx+\left (10 \left (1+\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )\right ) \int \frac {e^{-\frac {10}{2+e^x}}}{\left (2+e^x\right ) \left (2 x-\log (4)+i \sqrt {-\log ^2(4)+4 \log (16)}\right )} \, dx-\left (20 \left (1+\frac {i \log (4)}{\sqrt {-\log ^2(4)+4 \log (16)}}\right )\right ) \int \frac {e^{-\frac {10}{2+e^x}}}{\left (2+e^x\right )^2 \left (2 x-\log (4)+i \sqrt {-\log ^2(4)+4 \log (16)}\right )} \, dx+\left (\log ^2(4)+\log (256)\right ) \int \frac {x^2}{x^4-x^3 \log (16)+\log ^2(16)-x \log ^2(16)+x^2 \left (\log ^2(4)+\log (256)\right )} \, dx+\int \frac {x^4}{x^4-x^3 \log (16)+\log ^2(16)-x \log ^2(16)+x^2 \left (\log ^2(4)+\log (256)\right )} \, dx+\int \frac {e^{-\frac {10}{2+e^x}} \left (-x^2+\log (16)\right )}{x^4-x^3 \log (16)+\log ^2(16)-x \log ^2(16)+x^2 \left (\log ^2(4)+\log (256)\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.70, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{-\frac {10}{2+e^x}} \left (-4 x^2+8 \log (4)+e^{2 x} \left (-x^2+2 \log (4)\right )+e^x \left (-4 x^2+10 x^3+\left (8+20 x-10 x^2\right ) \log (4)\right )+e^{\frac {10}{2+e^x}} \left (4 x^4+\left (16 x^2-8 x^3\right ) \log (4)+\left (16-16 x+4 x^2\right ) \log ^2(4)+e^{2 x} \left (x^4+\left (4 x^2-2 x^3\right ) \log (4)+\left (4-4 x+x^2\right ) \log ^2(4)\right )+e^x \left (4 x^4+\left (16 x^2-8 x^3\right ) \log (4)+\left (16-16 x+4 x^2\right ) \log ^2(4)\right )\right )\right )}{4 x^4+\left (16 x^2-8 x^3\right ) \log (4)+\left (16-16 x+4 x^2\right ) \log ^2(4)+e^{2 x} \left (x^4+\left (4 x^2-2 x^3\right ) \log (4)+\left (4-4 x+x^2\right ) \log ^2(4)\right )+e^x \left (4 x^4+\left (16 x^2-8 x^3\right ) \log (4)+\left (16-16 x+4 x^2\right ) \log ^2(4)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 50, normalized size = 1.67 \begin {gather*} \frac {{\left ({\left (x^{3} - 2 \, {\left (x^{2} - 2 \, x\right )} \log \relax (2)\right )} e^{\left (\frac {10}{e^{x} + 2}\right )} + x\right )} e^{\left (-\frac {10}{e^{x} + 2}\right )}}{x^{2} - 2 \, {\left (x - 2\right )} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.30, size = 170, normalized size = 5.67 \begin {gather*} \frac {x^{3} e^{\left (\frac {x e^{x} + 2 \, x - 5 \, e^{x}}{e^{x} + 2} + 5\right )} - 2 \, x^{2} e^{\left (\frac {x e^{x} + 2 \, x - 5 \, e^{x}}{e^{x} + 2} + 5\right )} \log \relax (2) + 4 \, x e^{\left (\frac {x e^{x} + 2 \, x - 5 \, e^{x}}{e^{x} + 2} + 5\right )} \log \relax (2) + x e^{x}}{x^{2} e^{\left (\frac {x e^{x} + 2 \, x - 5 \, e^{x}}{e^{x} + 2} + 5\right )} - 2 \, x e^{\left (\frac {x e^{x} + 2 \, x - 5 \, e^{x}}{e^{x} + 2} + 5\right )} \log \relax (2) + 4 \, e^{\left (\frac {x e^{x} + 2 \, x - 5 \, e^{x}}{e^{x} + 2} + 5\right )} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 32, normalized size = 1.07
method | result | size |
risch | \(x -\frac {x \,{\mathrm e}^{-\frac {10}{{\mathrm e}^{x}+2}}}{2 x \ln \relax (2)-x^{2}-4 \ln \relax (2)}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x - \int \frac {{\left (4 \, x^{2} + {\left (x^{2} - 4 \, \log \relax (2)\right )} e^{\left (2 \, x\right )} - 2 \, {\left (5 \, x^{3} - 2 \, x^{2} {\left (5 \, \log \relax (2) + 1\right )} + 20 \, x \log \relax (2) + 8 \, \log \relax (2)\right )} e^{x} - 16 \, \log \relax (2)\right )} e^{\left (-\frac {10}{e^{x} + 2}\right )}}{4 \, x^{4} - 16 \, x^{3} \log \relax (2) + 16 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2)\right )} x^{2} - 64 \, x \log \relax (2)^{2} + {\left (x^{4} - 4 \, x^{3} \log \relax (2) + 4 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2)\right )} x^{2} - 16 \, x \log \relax (2)^{2} + 16 \, \log \relax (2)^{2}\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x^{4} - 4 \, x^{3} \log \relax (2) + 4 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2)\right )} x^{2} - 16 \, x \log \relax (2)^{2} + 16 \, \log \relax (2)^{2}\right )} e^{x} + 64 \, \log \relax (2)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{-\frac {10}{{\mathrm {e}}^x+2}}\,\left (16\,\ln \relax (2)+{\mathrm {e}}^{\frac {10}{{\mathrm {e}}^x+2}}\,\left ({\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left (16\,x^2-8\,x^3\right )+4\,{\ln \relax (2)}^2\,\left (4\,x^2-16\,x+16\right )+4\,x^4\right )+2\,\ln \relax (2)\,\left (16\,x^2-8\,x^3\right )+4\,{\ln \relax (2)}^2\,\left (4\,x^2-16\,x+16\right )+{\mathrm {e}}^{2\,x}\,\left (4\,{\ln \relax (2)}^2\,\left (x^2-4\,x+4\right )+2\,\ln \relax (2)\,\left (4\,x^2-2\,x^3\right )+x^4\right )+4\,x^4\right )+{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left (-10\,x^2+20\,x+8\right )-4\,x^2+10\,x^3\right )-4\,x^2+{\mathrm {e}}^{2\,x}\,\left (4\,\ln \relax (2)-x^2\right )\right )}{{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left (16\,x^2-8\,x^3\right )+4\,{\ln \relax (2)}^2\,\left (4\,x^2-16\,x+16\right )+4\,x^4\right )+2\,\ln \relax (2)\,\left (16\,x^2-8\,x^3\right )+4\,{\ln \relax (2)}^2\,\left (4\,x^2-16\,x+16\right )+{\mathrm {e}}^{2\,x}\,\left (4\,{\ln \relax (2)}^2\,\left (x^2-4\,x+4\right )+2\,\ln \relax (2)\,\left (4\,x^2-2\,x^3\right )+x^4\right )+4\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 26, normalized size = 0.87 \begin {gather*} x + \frac {x e^{- \frac {10}{e^{x} + 2}}}{x^{2} - 2 x \log {\relax (2 )} + 4 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________