Optimal. Leaf size=16 \[ e^x+\frac {1+x}{e^4 (-4+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {12, 27, 6742, 2194} \begin {gather*} e^x-\frac {5}{e^4 (4-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-5+e^{4+x} \left (16-8 x+x^2\right )}{16-8 x+x^2} \, dx}{e^4}\\ &=\frac {\int \frac {-5+e^{4+x} \left (16-8 x+x^2\right )}{(-4+x)^2} \, dx}{e^4}\\ &=\frac {\int \left (e^{4+x}-\frac {5}{(-4+x)^2}\right ) \, dx}{e^4}\\ &=-\frac {5}{e^4 (4-x)}+\frac {\int e^{4+x} \, dx}{e^4}\\ &=e^x-\frac {5}{e^4 (4-x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 19, normalized size = 1.19 \begin {gather*} \frac {e^{4+x}-\frac {5}{4-x}}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 18, normalized size = 1.12 \begin {gather*} \frac {{\left ({\left (x - 4\right )} e^{\left (x + 4\right )} + 5\right )} e^{\left (-4\right )}}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 22, normalized size = 1.38 \begin {gather*} \frac {{\left (x e^{\left (x + 4\right )} - 4 \, e^{\left (x + 4\right )} + 5\right )} e^{\left (-4\right )}}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.59, size = 13, normalized size = 0.81
method | result | size |
risch | \(\frac {5 \,{\mathrm e}^{-4}}{x -4}+{\mathrm e}^{x}\) | \(13\) |
norman | \(\frac {{\mathrm e}^{x} x -4 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{-4}}{x -4}\) | \(22\) |
default | \({\mathrm e}^{-4} \left ({\mathrm e}^{4} \left ({\mathrm e}^{x}-\frac {16 \,{\mathrm e}^{x}}{x -4}-24 \,{\mathrm e}^{4} \expIntegralEi \left (1, -x +4\right )\right )+\frac {5}{x -4}+16 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{x}}{x -4}-{\mathrm e}^{4} \expIntegralEi \left (1, -x +4\right )\right )-8 \,{\mathrm e}^{4} \left (-\frac {4 \,{\mathrm e}^{x}}{x -4}-5 \,{\mathrm e}^{4} \expIntegralEi \left (1, -x +4\right )\right )\right )\) | \(90\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} {\left (\frac {{\left (x^{2} e^{4} - 8 \, x e^{4}\right )} e^{x}}{x^{2} - 8 \, x + 16} - \frac {16 \, e^{8} E_{2}\left (-x + 4\right )}{x - 4} + \frac {5}{x - 4} - 32 \, \int \frac {e^{\left (x + 4\right )}}{x^{3} - 12 \, x^{2} + 48 \, x - 64}\,{d x}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 22, normalized size = 1.38 \begin {gather*} {\mathrm {e}}^{x+4}\,{\mathrm {e}}^{-4}-\frac {5}{4\,{\mathrm {e}}^4-x\,{\mathrm {e}}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 14, normalized size = 0.88 \begin {gather*} e^{x} + \frac {5}{x e^{4} - 4 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________