Optimal. Leaf size=29 \[ 5 e^{(2+x+\log (x)) \left (2 x+\frac {x}{\log \left (\frac {1}{x (4+\log (x))}\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2 x+x^2+x \log (x)+\left (4 x+2 x^2+2 x \log (x)\right ) \log \left (\frac {1}{4 x+x \log (x)}\right )}{\log \left (\frac {1}{4 x+x \log (x)}\right )}\right ) \left (50+25 x+(35+5 x) \log (x)+5 \log ^2(x)+\left (60+40 x+(35+10 x) \log (x)+5 \log ^2(x)\right ) \log \left (\frac {1}{4 x+x \log (x)}\right )+\left (120+80 x+(70+20 x) \log (x)+10 \log ^2(x)\right ) \log ^2\left (\frac {1}{4 x+x \log (x)}\right )\right )}{(4+\log (x)) \log ^2\left (\frac {1}{4 x+x \log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {x (2+x+\log (x)) \left (1+2 \log \left (\frac {1}{4 x+x \log (x)}\right )\right )}{\log \left (\frac {1}{4 x+x \log (x)}\right )}\right ) \left (50+25 x+(35+5 x) \log (x)+5 \log ^2(x)+\left (60+40 x+(35+10 x) \log (x)+5 \log ^2(x)\right ) \log \left (\frac {1}{4 x+x \log (x)}\right )+\left (120+80 x+(70+20 x) \log (x)+10 \log ^2(x)\right ) \log ^2\left (\frac {1}{4 x+x \log (x)}\right )\right )}{(4+\log (x)) \log ^2\left (\frac {1}{4 x+x \log (x)}\right )} \, dx\\ &=\int \left (10 \exp \left (\frac {x (2+x+\log (x)) \left (1+2 \log \left (\frac {1}{4 x+x \log (x)}\right )\right )}{\log \left (\frac {1}{4 x+x \log (x)}\right )}\right ) (3+2 x+\log (x))+\frac {5 \exp \left (\frac {x (2+x+\log (x)) \left (1+2 \log \left (\frac {1}{4 x+x \log (x)}\right )\right )}{\log \left (\frac {1}{4 x+x \log (x)}\right )}\right ) (5+\log (x)) (2+x+\log (x))}{(4+\log (x)) \log ^2\left (\frac {1}{4 x+x \log (x)}\right )}+\frac {5 \exp \left (\frac {x (2+x+\log (x)) \left (1+2 \log \left (\frac {1}{4 x+x \log (x)}\right )\right )}{\log \left (\frac {1}{4 x+x \log (x)}\right )}\right ) (3+2 x+\log (x))}{\log \left (\frac {1}{4 x+x \log (x)}\right )}\right ) \, dx\\ &=5 \int \frac {\exp \left (\frac {x (2+x+\log (x)) \left (1+2 \log \left (\frac {1}{4 x+x \log (x)}\right )\right )}{\log \left (\frac {1}{4 x+x \log (x)}\right )}\right ) (5+\log (x)) (2+x+\log (x))}{(4+\log (x)) \log ^2\left (\frac {1}{4 x+x \log (x)}\right )} \, dx+5 \int \frac {\exp \left (\frac {x (2+x+\log (x)) \left (1+2 \log \left (\frac {1}{4 x+x \log (x)}\right )\right )}{\log \left (\frac {1}{4 x+x \log (x)}\right )}\right ) (3+2 x+\log (x))}{\log \left (\frac {1}{4 x+x \log (x)}\right )} \, dx+10 \int \exp \left (\frac {x (2+x+\log (x)) \left (1+2 \log \left (\frac {1}{4 x+x \log (x)}\right )\right )}{\log \left (\frac {1}{4 x+x \log (x)}\right )}\right ) (3+2 x+\log (x)) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 35, normalized size = 1.21 \begin {gather*} 5 e^{x \left (4+2 x+\frac {2+x+\log (x)}{\log \left (\frac {1}{4 x+x \log (x)}\right )}\right )} x^{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 52, normalized size = 1.79 \begin {gather*} 5 \, e^{\left (\frac {x^{2} + x \log \relax (x) + 2 \, {\left (x^{2} + x \log \relax (x) + 2 \, x\right )} \log \left (\frac {1}{x \log \relax (x) + 4 \, x}\right ) + 2 \, x}{\log \left (\frac {1}{x \log \relax (x) + 4 \, x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 67.65, size = 63, normalized size = 2.17 \begin {gather*} 5 \, e^{\left (2 \, x^{2} + 2 \, x \log \relax (x) + 4 \, x - \frac {x^{2}}{\log \left (x \log \relax (x) + 4 \, x\right )} - \frac {x \log \relax (x)}{\log \left (x \log \relax (x) + 4 \, x\right )} - \frac {2 \, x}{\log \left (x \log \relax (x) + 4 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.77, size = 255, normalized size = 8.79
method | result | size |
risch | \(5 \,{\mathrm e}^{\frac {2 x \left (x +\ln \relax (x )+2\right ) \left (i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )+4}\right ) \mathrm {csgn}\left (\frac {i}{x \left (\ln \relax (x )+4\right )}\right )-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \left (\ln \relax (x )+4\right )}\right )^{2}-i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )+4}\right ) \mathrm {csgn}\left (\frac {i}{x \left (\ln \relax (x )+4\right )}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i}{x \left (\ln \relax (x )+4\right )}\right )^{3}+2 \ln \relax (x )+2 \ln \left (\ln \relax (x )+4\right )-1\right )}{i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )+4}\right ) \mathrm {csgn}\left (\frac {i}{x \left (\ln \relax (x )+4\right )}\right )-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \left (\ln \relax (x )+4\right )}\right )^{2}-i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )+4}\right ) \mathrm {csgn}\left (\frac {i}{x \left (\ln \relax (x )+4\right )}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i}{x \left (\ln \relax (x )+4\right )}\right )^{3}+2 \ln \relax (x )+2 \ln \left (\ln \relax (x )+4\right )}}\) | \(255\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.76, size = 60, normalized size = 2.07 \begin {gather*} 5 \, e^{\left (2 \, x^{2} + 2 \, x \log \relax (x) + 4 \, x - \frac {x^{2}}{\log \relax (x) + \log \left (\log \relax (x) + 4\right )} - \frac {x \log \relax (x)}{\log \relax (x) + \log \left (\log \relax (x) + 4\right )} - \frac {2 \, x}{\log \relax (x) + \log \left (\log \relax (x) + 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.22, size = 69, normalized size = 2.38 \begin {gather*} 5\,x^{2\,x}\,x^{\frac {x}{\ln \left (\frac {1}{4\,x+x\,\ln \relax (x)}\right )}}\,{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{\frac {2\,x}{\ln \left (\frac {1}{4\,x+x\,\ln \relax (x)}\right )}}\,{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^{\frac {x^2}{\ln \left (\frac {1}{4\,x+x\,\ln \relax (x)}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.27, size = 53, normalized size = 1.83 \begin {gather*} 5 e^{\frac {x^{2} + x \log {\relax (x )} + 2 x + \left (2 x^{2} + 2 x \log {\relax (x )} + 4 x\right ) \log {\left (\frac {1}{x \log {\relax (x )} + 4 x} \right )}}{\log {\left (\frac {1}{x \log {\relax (x )} + 4 x} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________