Optimal. Leaf size=31 \[ \frac {\log \left (\frac {1}{5} \left (-4+\frac {3 x}{e^5-20 x-\log (4)}\right )\right )}{4-x} \]
________________________________________________________________________________________
Rubi [B] time = 1.13, antiderivative size = 280, normalized size of antiderivative = 9.03, number of steps used = 10, number of rules used = 7, integrand size = 181, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.039, Rules used = {6, 6688, 6742, 72, 2490, 36, 31} \begin {gather*} -\frac {\left (3 e^5-\log (64)\right ) \log (4-x)}{\left (80-e^5+\log (4)\right ) \left (332-4 e^5+\log (256)\right )}+\frac {3 \left (e^5-\log (4)\right ) \log (4-x)}{\left (80-e^5+\log (4)\right ) \left (332-4 e^5+\log (256)\right )}-\frac {60 \left (e^5-\log (4)\right ) \log \left (-20 x+e^5-\log (4)\right )}{\left (80-e^5+\log (4)\right ) \left (3 e^5-\log (64)\right )}+\frac {\left (3 e^5-\log (64)\right ) \log \left (-83 x+4 e^5-\log (256)\right )}{\left (80-e^5+\log (4)\right ) \left (332-4 e^5+\log (256)\right )}+\frac {249 \left (e^5-\log (4)\right ) \log \left (-83 x+4 e^5-\log (256)\right )}{\left (3 e^5-\log (64)\right ) \left (332-4 e^5+\log (256)\right )}-\frac {\left (-20 x+e^5-\log (4)\right ) \log \left (-\frac {-83 x+4 e^5-\log (256)}{5 \left (-20 x+e^5-\log (4)\right )}\right )}{(4-x) \left (80-e^5+\log (4)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 31
Rule 36
Rule 72
Rule 2490
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^5 (-12+3 x)+(12-3 x) \log (4)+\left (4 e^{10}-163 e^5 x+1660 x^2+\left (-8 e^5+163 x\right ) \log (4)+4 \log ^2(4)\right ) \log \left (\frac {4 e^5-83 x-4 \log (4)}{-5 e^5+100 x+5 \log (4)}\right )}{26560 x^2-13280 x^3+1660 x^4+e^5 \left (-2608 x+1304 x^2-163 x^3\right )+\left (2608 x-1304 x^2+163 x^3+e^5 \left (-128+64 x-8 x^2\right )\right ) \log (4)+\left (64-32 x+4 x^2\right ) \left (e^{10}+\log ^2(4)\right )} \, dx\\ &=\int \frac {\frac {3 (-4+x) \left (e^5-\log (4)\right )}{4 e^{10}+1660 x^2+163 x \log (4)+4 \log ^2(4)-e^5 (163 x+8 \log (4))}+\log \left (\frac {-4 e^5+83 x+\log (256)}{5 \left (e^5-20 x-\log (4)\right )}\right )}{(4-x)^2} \, dx\\ &=\int \left (\frac {3 \left (e^5-\log (4)\right )}{(-4+x) \left (-e^5+20 x+\log (4)\right ) \left (-4 e^5+83 x+\log (256)\right )}+\frac {\log \left (\frac {-4 e^5+83 x+\log (256)}{5 \left (e^5-20 x-\log (4)\right )}\right )}{(-4+x)^2}\right ) \, dx\\ &=\left (3 \left (e^5-\log (4)\right )\right ) \int \frac {1}{(-4+x) \left (-e^5+20 x+\log (4)\right ) \left (-4 e^5+83 x+\log (256)\right )} \, dx+\int \frac {\log \left (\frac {-4 e^5+83 x+\log (256)}{5 \left (e^5-20 x-\log (4)\right )}\right )}{(-4+x)^2} \, dx\\ &=-\frac {\left (e^5-20 x-\log (4)\right ) \log \left (-\frac {4 e^5-83 x-\log (256)}{5 \left (e^5-20 x-\log (4)\right )}\right )}{(4-x) \left (80-e^5+\log (4)\right )}+\left (3 \left (e^5-\log (4)\right )\right ) \int \left (-\frac {400}{\left (-80+e^5-\log (4)\right ) \left (e^5-20 x-\log (4)\right ) \left (3 e^5-\log (64)\right )}+\frac {1}{(-4+x) \left (-80+e^5-\log (4)\right ) \left (-332+4 e^5-\log (256)\right )}+\frac {6889}{\left (3 e^5-\log (64)\right ) \left (-332+4 e^5-\log (256)\right ) \left (4 e^5-83 x-\log (256)\right )}\right ) \, dx-\frac {\left (3 e^5-\log (64)\right ) \int \frac {1}{(-4+x) \left (-4 e^5+83 x+\log (256)\right )} \, dx}{80-e^5+\log (4)}\\ &=\frac {3 \left (e^5-\log (4)\right ) \log (4-x)}{\left (80-e^5+\log (4)\right ) \left (332-4 e^5+\log (256)\right )}-\frac {60 \left (e^5-\log (4)\right ) \log \left (e^5-20 x-\log (4)\right )}{\left (80-e^5+\log (4)\right ) \left (3 e^5-\log (64)\right )}+\frac {249 \left (e^5-\log (4)\right ) \log \left (4 e^5-83 x-\log (256)\right )}{\left (3 e^5-\log (64)\right ) \left (332-4 e^5+\log (256)\right )}-\frac {\left (e^5-20 x-\log (4)\right ) \log \left (-\frac {4 e^5-83 x-\log (256)}{5 \left (e^5-20 x-\log (4)\right )}\right )}{(4-x) \left (80-e^5+\log (4)\right )}-\frac {\left (3 e^5-\log (64)\right ) \int \frac {1}{-4+x} \, dx}{\left (80-e^5+\log (4)\right ) \left (332-4 e^5+\log (256)\right )}+\frac {\left (83 \left (3 e^5-\log (64)\right )\right ) \int \frac {1}{-4 e^5+83 x+\log (256)} \, dx}{\left (80-e^5+\log (4)\right ) \left (332-4 e^5+\log (256)\right )}\\ &=\frac {3 \left (e^5-\log (4)\right ) \log (4-x)}{\left (80-e^5+\log (4)\right ) \left (332-4 e^5+\log (256)\right )}-\frac {\left (3 e^5-\log (64)\right ) \log (4-x)}{\left (80-e^5+\log (4)\right ) \left (332-4 e^5+\log (256)\right )}-\frac {60 \left (e^5-\log (4)\right ) \log \left (e^5-20 x-\log (4)\right )}{\left (80-e^5+\log (4)\right ) \left (3 e^5-\log (64)\right )}+\frac {249 \left (e^5-\log (4)\right ) \log \left (4 e^5-83 x-\log (256)\right )}{\left (3 e^5-\log (64)\right ) \left (332-4 e^5+\log (256)\right )}+\frac {\left (3 e^5-\log (64)\right ) \log \left (4 e^5-83 x-\log (256)\right )}{\left (80-e^5+\log (4)\right ) \left (332-4 e^5+\log (256)\right )}-\frac {\left (e^5-20 x-\log (4)\right ) \log \left (-\frac {4 e^5-83 x-\log (256)}{5 \left (e^5-20 x-\log (4)\right )}\right )}{(4-x) \left (80-e^5+\log (4)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 35, normalized size = 1.13 \begin {gather*} -\frac {\log \left (\frac {-4 e^5+83 x+\log (256)}{5 e^5-100 x-\log (1024)}\right )}{-4+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.06, size = 36, normalized size = 1.16 \begin {gather*} -\frac {\log \left (-\frac {83 \, x - 4 \, e^{5} + 8 \, \log \relax (2)}{5 \, {\left (20 \, x - e^{5} + 2 \, \log \relax (2)\right )}}\right )}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 4.21, size = 295, normalized size = 9.52 \begin {gather*} -\frac {\frac {20 \, {\left (83 \, x - 4 \, e^{5} + 8 \, \log \relax (2)\right )} e^{5} \log \left (-\frac {83 \, x - 4 \, e^{5} + 8 \, \log \relax (2)}{5 \, {\left (20 \, x - e^{5} + 2 \, \log \relax (2)\right )}}\right )}{20 \, x - e^{5} + 2 \, \log \relax (2)} - 83 \, e^{5} \log \left (-\frac {83 \, x - 4 \, e^{5} + 8 \, \log \relax (2)}{5 \, {\left (20 \, x - e^{5} + 2 \, \log \relax (2)\right )}}\right ) - \frac {40 \, {\left (83 \, x - 4 \, e^{5} + 8 \, \log \relax (2)\right )} \log \relax (2) \log \left (-\frac {83 \, x - 4 \, e^{5} + 8 \, \log \relax (2)}{5 \, {\left (20 \, x - e^{5} + 2 \, \log \relax (2)\right )}}\right )}{20 \, x - e^{5} + 2 \, \log \relax (2)} + 166 \, \log \relax (2) \log \left (-\frac {83 \, x - 4 \, e^{5} + 8 \, \log \relax (2)}{5 \, {\left (20 \, x - e^{5} + 2 \, \log \relax (2)\right )}}\right )}{{\left (\frac {{\left (83 \, x - 4 \, e^{5} + 8 \, \log \relax (2)\right )} e^{5}}{20 \, x - e^{5} + 2 \, \log \relax (2)} - \frac {2 \, {\left (83 \, x - 4 \, e^{5} + 8 \, \log \relax (2)\right )} \log \relax (2)}{20 \, x - e^{5} + 2 \, \log \relax (2)} - \frac {80 \, {\left (83 \, x - 4 \, e^{5} + 8 \, \log \relax (2)\right )}}{20 \, x - e^{5} + 2 \, \log \relax (2)} - 4 \, e^{5} + 8 \, \log \relax (2) + 332\right )} {\left (e^{5} - 2 \, \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.52, size = 36, normalized size = 1.16
method | result | size |
norman | \(-\frac {\ln \left (\frac {-8 \ln \relax (2)+4 \,{\mathrm e}^{5}-83 x}{10 \ln \relax (2)-5 \,{\mathrm e}^{5}+100 x}\right )}{x -4}\) | \(36\) |
risch | \(-\frac {\ln \left (\frac {-8 \ln \relax (2)+4 \,{\mathrm e}^{5}-83 x}{10 \ln \relax (2)-5 \,{\mathrm e}^{5}+100 x}\right )}{x -4}\) | \(36\) |
derivativedivides | \(-\frac {\left (-300 \,{\mathrm e}^{5}+600 \ln \relax (2)\right ) \left (-\frac {\left (\ln \left (\frac {20 \,{\mathrm e}^{5} \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-20 \ln \relax (2)^{2} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+16 \,{\mathrm e}^{5} \ln \relax (2)+800 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-16 \ln \relax (2)^{2}-1600 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-5 \,{\mathrm e}^{10} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+652 \,{\mathrm e}^{5}-12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-\frac {32000 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}}{16 \,{\mathrm e}^{5} \ln \relax (2)-16 \ln \relax (2)^{2}+652 \,{\mathrm e}^{5}-12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-26560}\right )-\ln \left (\frac {20 \,{\mathrm e}^{5} \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-20 \ln \relax (2)^{2} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+16 \,{\mathrm e}^{5} \ln \relax (2)+800 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-16 \ln \relax (2)^{2}-1600 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-5 \,{\mathrm e}^{10} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+652 \,{\mathrm e}^{5}+12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-\frac {32000 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}}{16 \,{\mathrm e}^{5} \ln \relax (2)-16 \ln \relax (2)^{2}+652 \,{\mathrm e}^{5}+12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-26560}\right )\right ) \ln \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )}{120 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}-\frac {\dilog \left (\frac {20 \,{\mathrm e}^{5} \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-20 \ln \relax (2)^{2} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+16 \,{\mathrm e}^{5} \ln \relax (2)+800 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-16 \ln \relax (2)^{2}-1600 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-5 \,{\mathrm e}^{10} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+652 \,{\mathrm e}^{5}-12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-\frac {32000 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}}{16 \,{\mathrm e}^{5} \ln \relax (2)-16 \ln \relax (2)^{2}+652 \,{\mathrm e}^{5}-12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-26560}\right )}{120 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}+\frac {\dilog \left (\frac {20 \,{\mathrm e}^{5} \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-20 \ln \relax (2)^{2} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+16 \,{\mathrm e}^{5} \ln \relax (2)+800 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-16 \ln \relax (2)^{2}-1600 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-5 \,{\mathrm e}^{10} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+652 \,{\mathrm e}^{5}+12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-\frac {32000 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}}{16 \,{\mathrm e}^{5} \ln \relax (2)-16 \ln \relax (2)^{2}+652 \,{\mathrm e}^{5}+12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-26560}\right )}{120 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}-\frac {83 \ln \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )}{15 \left ({\mathrm e}^{5}-2 \ln \relax (2)\right ) \left (4 \,{\mathrm e}^{5}-8 \ln \relax (2)-332\right )}-\frac {2 \ln \left (5 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-10 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+4 \,{\mathrm e}^{5}-8 \ln \relax (2)-\frac {400 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right ) \ln \relax (2)}{\left ({\mathrm e}^{5}-2 \ln \relax (2)\right ) \left (4 \,{\mathrm e}^{5}-8 \ln \relax (2)-332\right ) \left (5 \,{\mathrm e}^{5}-10 \ln \relax (2)-400\right )}+\frac {\ln \left (5 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-10 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+4 \,{\mathrm e}^{5}-8 \ln \relax (2)-\frac {400 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right ) {\mathrm e}^{5}}{\left ({\mathrm e}^{5}-2 \ln \relax (2)\right ) \left (4 \,{\mathrm e}^{5}-8 \ln \relax (2)-332\right ) \left (5 \,{\mathrm e}^{5}-10 \ln \relax (2)-400\right )}\right )}{20}\) | \(1439\) |
default | \(-\frac {\left (-300 \,{\mathrm e}^{5}+600 \ln \relax (2)\right ) \left (-\frac {\left (\ln \left (\frac {20 \,{\mathrm e}^{5} \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-20 \ln \relax (2)^{2} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+16 \,{\mathrm e}^{5} \ln \relax (2)+800 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-16 \ln \relax (2)^{2}-1600 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-5 \,{\mathrm e}^{10} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+652 \,{\mathrm e}^{5}-12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-\frac {32000 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}}{16 \,{\mathrm e}^{5} \ln \relax (2)-16 \ln \relax (2)^{2}+652 \,{\mathrm e}^{5}-12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-26560}\right )-\ln \left (\frac {20 \,{\mathrm e}^{5} \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-20 \ln \relax (2)^{2} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+16 \,{\mathrm e}^{5} \ln \relax (2)+800 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-16 \ln \relax (2)^{2}-1600 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-5 \,{\mathrm e}^{10} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+652 \,{\mathrm e}^{5}+12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-\frac {32000 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}}{16 \,{\mathrm e}^{5} \ln \relax (2)-16 \ln \relax (2)^{2}+652 \,{\mathrm e}^{5}+12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-26560}\right )\right ) \ln \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )}{120 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}-\frac {\dilog \left (\frac {20 \,{\mathrm e}^{5} \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-20 \ln \relax (2)^{2} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+16 \,{\mathrm e}^{5} \ln \relax (2)+800 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-16 \ln \relax (2)^{2}-1600 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-5 \,{\mathrm e}^{10} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+652 \,{\mathrm e}^{5}-12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-\frac {32000 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}}{16 \,{\mathrm e}^{5} \ln \relax (2)-16 \ln \relax (2)^{2}+652 \,{\mathrm e}^{5}-12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-26560}\right )}{120 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}+\frac {\dilog \left (\frac {20 \,{\mathrm e}^{5} \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-20 \ln \relax (2)^{2} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+16 \,{\mathrm e}^{5} \ln \relax (2)+800 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-16 \ln \relax (2)^{2}-1600 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-5 \,{\mathrm e}^{10} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+652 \,{\mathrm e}^{5}+12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-\frac {32000 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}}{16 \,{\mathrm e}^{5} \ln \relax (2)-16 \ln \relax (2)^{2}+652 \,{\mathrm e}^{5}+12 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}-1304 \ln \relax (2)-4 \,{\mathrm e}^{10}-26560}\right )}{120 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}-\frac {83 \ln \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )}{15 \left ({\mathrm e}^{5}-2 \ln \relax (2)\right ) \left (4 \,{\mathrm e}^{5}-8 \ln \relax (2)-332\right )}-\frac {2 \ln \left (5 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-10 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+4 \,{\mathrm e}^{5}-8 \ln \relax (2)-\frac {400 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right ) \ln \relax (2)}{\left ({\mathrm e}^{5}-2 \ln \relax (2)\right ) \left (4 \,{\mathrm e}^{5}-8 \ln \relax (2)-332\right ) \left (5 \,{\mathrm e}^{5}-10 \ln \relax (2)-400\right )}+\frac {\ln \left (5 \,{\mathrm e}^{5} \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )-10 \ln \relax (2) \left (-\frac {83}{100}+\frac {\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right )+4 \,{\mathrm e}^{5}-8 \ln \relax (2)-\frac {400 \left (\frac {3 \ln \relax (2)}{50}-\frac {3 \,{\mathrm e}^{5}}{100}\right )}{-{\mathrm e}^{5}+2 \ln \relax (2)+20 x}\right ) {\mathrm e}^{5}}{\left ({\mathrm e}^{5}-2 \ln \relax (2)\right ) \left (4 \,{\mathrm e}^{5}-8 \ln \relax (2)-332\right ) \left (5 \,{\mathrm e}^{5}-10 \ln \relax (2)-400\right )}\right )}{20}\) | \(1439\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.74, size = 1260, normalized size = 40.65 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.63, size = 36, normalized size = 1.16 \begin {gather*} -\frac {\ln \left (-\frac {83\,x-4\,{\mathrm {e}}^5+8\,\ln \relax (2)}{5\,\left (20\,x-{\mathrm {e}}^5+2\,\ln \relax (2)\right )}\right )}{x-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 32, normalized size = 1.03 \begin {gather*} - \frac {\log {\left (\frac {- 83 x - 8 \log {\relax (2 )} + 4 e^{5}}{100 x - 5 e^{5} + 10 \log {\relax (2 )}} \right )}}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________