3.1.18
Optimal. Leaf size=13
________________________________________________________________________________________
Rubi [B] time = 1.11, antiderivative size = 105, normalized size of antiderivative = 8.08,
number of steps used = 83, number of rules used = 6, integrand size = 113, = 0.053, Rules used
= {2313, 9, 1593, 2353, 2305, 2304}
Antiderivative was successfully verified.
[In]
Int[-1119744 + (-1119744 - 1306368*x)*Log[x] + (-1306368*x - 653184*x^2)*Log[x]^2 + (-653184*x^2 - 181440*x^3)
*Log[x]^3 + (-181440*x^3 - 30240*x^4)*Log[x]^4 + (-30240*x^4 - 3024*x^5)*Log[x]^5 + (-3024*x^5 - 168*x^6)*Log[
x]^6 + (-168*x^6 - 4*x^7)*Log[x]^7 - 4*x^7*Log[x]^8,x]
[Out]
-1119744*x - 326592*x^2 + (46656*(12 + 7*x)^2)/7 + 653184*x^2*Log[x] - 93312*(12*x + 7*x^2)*Log[x] - 653184*x^
2*Log[x]^2 - 217728*x^3*Log[x]^3 - 45360*x^4*Log[x]^4 - 6048*x^5*Log[x]^5 - 504*x^6*Log[x]^6 - 24*x^7*Log[x]^7
- (x^8*Log[x]^8)/2
Rule 9
Int[(a_)*((b_) + (c_.)*(x_)), x_Symbol] :> Simp[(a*(b + c*x)^2)/(2*c), x] /; FreeQ[{a, b, c}, x]
Rule 1593
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]
Rule 2304
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]
Rule 2305
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]
Rule 2313
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(d +
e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{a,
b, c, d, e, n, r}, x] && IGtQ[q, 0]
Rule 2353
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 12, normalized size = 0.92
Antiderivative was successfully verified.
[In]
Integrate[-1119744 + (-1119744 - 1306368*x)*Log[x] + (-1306368*x - 653184*x^2)*Log[x]^2 + (-653184*x^2 - 18144
0*x^3)*Log[x]^3 + (-181440*x^3 - 30240*x^4)*Log[x]^4 + (-30240*x^4 - 3024*x^5)*Log[x]^5 + (-3024*x^5 - 168*x^6
)*Log[x]^6 + (-168*x^6 - 4*x^7)*Log[x]^7 - 4*x^7*Log[x]^8,x]
[Out]
-1/2*(6 + x*Log[x])^8
________________________________________________________________________________________
fricas [B] time = 0.50, size = 69, normalized size = 5.31
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(-4*x^7*log(x)^8+(-4*x^7-168*x^6)*log(x)^7+(-168*x^6-3024*x^5)*log(x)^6+(-3024*x^5-30240*x^4)*log(x)^
5+(-30240*x^4-181440*x^3)*log(x)^4+(-181440*x^3-653184*x^2)*log(x)^3+(-653184*x^2-1306368*x)*log(x)^2+(-130636
8*x-1119744)*log(x)-1119744,x, algorithm="fricas")
[Out]
-1/2*x^8*log(x)^8 - 24*x^7*log(x)^7 - 504*x^6*log(x)^6 - 6048*x^5*log(x)^5 - 45360*x^4*log(x)^4 - 217728*x^3*l
og(x)^3 - 653184*x^2*log(x)^2 - 1119744*x*log(x)
________________________________________________________________________________________
giac [B] time = 0.14, size = 69, normalized size = 5.31
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(-4*x^7*log(x)^8+(-4*x^7-168*x^6)*log(x)^7+(-168*x^6-3024*x^5)*log(x)^6+(-3024*x^5-30240*x^4)*log(x)^
5+(-30240*x^4-181440*x^3)*log(x)^4+(-181440*x^3-653184*x^2)*log(x)^3+(-653184*x^2-1306368*x)*log(x)^2+(-130636
8*x-1119744)*log(x)-1119744,x, algorithm="giac")
[Out]
-1/2*x^8*log(x)^8 - 24*x^7*log(x)^7 - 504*x^6*log(x)^6 - 6048*x^5*log(x)^5 - 45360*x^4*log(x)^4 - 217728*x^3*l
og(x)^3 - 653184*x^2*log(x)^2 - 1119744*x*log(x)
________________________________________________________________________________________
maple [B] time = 0.06, size = 70, normalized size = 5.38
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-4*x^7*ln(x)^8+(-4*x^7-168*x^6)*ln(x)^7+(-168*x^6-3024*x^5)*ln(x)^6+(-3024*x^5-30240*x^4)*ln(x)^5+(-30240*
x^4-181440*x^3)*ln(x)^4+(-181440*x^3-653184*x^2)*ln(x)^3+(-653184*x^2-1306368*x)*ln(x)^2+(-1306368*x-1119744)*
ln(x)-1119744,x,method=_RETURNVERBOSE)
[Out]
-6048*x^5*ln(x)^5-504*x^6*ln(x)^6-24*x^7*ln(x)^7-653184*x^2*ln(x)^2-217728*x^3*ln(x)^3-1119744*x*ln(x)-45360*x
^4*ln(x)^4-1/2*x^8*ln(x)^8
________________________________________________________________________________________
maxima [B] time = 0.52, size = 456, normalized size = 35.08
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(-4*x^7*log(x)^8+(-4*x^7-168*x^6)*log(x)^7+(-168*x^6-3024*x^5)*log(x)^6+(-3024*x^5-30240*x^4)*log(x)^
5+(-30240*x^4-181440*x^3)*log(x)^4+(-181440*x^3-653184*x^2)*log(x)^3+(-653184*x^2-1306368*x)*log(x)^2+(-130636
8*x-1119744)*log(x)-1119744,x, algorithm="maxima")
[Out]
-1/262144*(131072*log(x)^8 - 131072*log(x)^7 + 114688*log(x)^6 - 86016*log(x)^5 + 53760*log(x)^4 - 26880*log(x
)^3 + 10080*log(x)^2 - 2520*log(x) + 315)*x^8 - 1/262144*(131072*log(x)^7 - 114688*log(x)^6 + 86016*log(x)^5 -
53760*log(x)^4 + 26880*log(x)^3 - 10080*log(x)^2 + 2520*log(x) - 315)*x^8 - 24/117649*(117649*log(x)^7 - 1176
49*log(x)^6 + 100842*log(x)^5 - 72030*log(x)^4 + 41160*log(x)^3 - 17640*log(x)^2 + 5040*log(x) - 720)*x^7 - 24
/117649*(117649*log(x)^6 - 100842*log(x)^5 + 72030*log(x)^4 - 41160*log(x)^3 + 17640*log(x)^2 - 5040*log(x) +
720)*x^7 - 14/9*(324*log(x)^6 - 324*log(x)^5 + 270*log(x)^4 - 180*log(x)^3 + 90*log(x)^2 - 30*log(x) + 5)*x^6
- 14/9*(324*log(x)^5 - 270*log(x)^4 + 180*log(x)^3 - 90*log(x)^2 + 30*log(x) - 5)*x^6 - 6048/625*(625*log(x)^5
- 625*log(x)^4 + 500*log(x)^3 - 300*log(x)^2 + 120*log(x) - 24)*x^5 - 6048/625*(625*log(x)^4 - 500*log(x)^3 +
300*log(x)^2 - 120*log(x) + 24)*x^5 - 2835/2*(32*log(x)^4 - 32*log(x)^3 + 24*log(x)^2 - 12*log(x) + 3)*x^4 -
2835/2*(32*log(x)^3 - 24*log(x)^2 + 12*log(x) - 3)*x^4 - 24192*(9*log(x)^3 - 9*log(x)^2 + 6*log(x) - 2)*x^3 -
24192*(9*log(x)^2 - 6*log(x) + 2)*x^3 - 326592*(2*log(x)^2 - 2*log(x) + 1)*x^2 + 326592*x^2 - 93312*(7*x^2 + 1
2*x)*log(x)
________________________________________________________________________________________
mupad [B] time = 0.34, size = 69, normalized size = 5.31
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(- log(x)^2*(1306368*x + 653184*x^2) - log(x)^7*(168*x^6 + 4*x^7) - log(x)^6*(3024*x^5 + 168*x^6) - log(x)^
5*(30240*x^4 + 3024*x^5) - log(x)^4*(181440*x^3 + 30240*x^4) - log(x)^3*(653184*x^2 + 181440*x^3) - 4*x^7*log(
x)^8 - log(x)*(1306368*x + 1119744) - 1119744,x)
[Out]
- 653184*x^2*log(x)^2 - 217728*x^3*log(x)^3 - 45360*x^4*log(x)^4 - 6048*x^5*log(x)^5 - 504*x^6*log(x)^6 - 24*x
^7*log(x)^7 - (x^8*log(x)^8)/2 - 1119744*x*log(x)
________________________________________________________________________________________
sympy [B] time = 0.21, size = 78, normalized size = 6.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(-4*x**7*ln(x)**8+(-4*x**7-168*x**6)*ln(x)**7+(-168*x**6-3024*x**5)*ln(x)**6+(-3024*x**5-30240*x**4)*
ln(x)**5+(-30240*x**4-181440*x**3)*ln(x)**4+(-181440*x**3-653184*x**2)*ln(x)**3+(-653184*x**2-1306368*x)*ln(x)
**2+(-1306368*x-1119744)*ln(x)-1119744,x)
[Out]
-x**8*log(x)**8/2 - 24*x**7*log(x)**7 - 504*x**6*log(x)**6 - 6048*x**5*log(x)**5 - 45360*x**4*log(x)**4 - 2177
28*x**3*log(x)**3 - 653184*x**2*log(x)**2 - 1119744*x*log(x)
________________________________________________________________________________________