3.1.18 (1119744+(11197441306368x)log(x)+(1306368x653184x2)log2(x)+(653184x2181440x3)log3(x)+(181440x330240x4)log4(x)+(30240x43024x5)log5(x)+(3024x5168x6)log6(x)+(168x64x7)log7(x)4x7log8(x))dx

Optimal. Leaf size=13 12(6xlog(x))8

________________________________________________________________________________________

Rubi [B]  time = 1.11, antiderivative size = 105, normalized size of antiderivative = 8.08, number of steps used = 83, number of rules used = 6, integrand size = 113, number of rulesintegrand size = 0.053, Rules used = {2313, 9, 1593, 2353, 2305, 2304} 12x8log8(x)24x7log7(x)504x6log6(x)6048x5log5(x)45360x4log4(x)217728x3log3(x)326592x2653184x2log2(x)+653184x2log(x)93312(7x2+12x)log(x)+466567(7x+12)21119744x

Antiderivative was successfully verified.

[In]

Int[-1119744 + (-1119744 - 1306368*x)*Log[x] + (-1306368*x - 653184*x^2)*Log[x]^2 + (-653184*x^2 - 181440*x^3)
*Log[x]^3 + (-181440*x^3 - 30240*x^4)*Log[x]^4 + (-30240*x^4 - 3024*x^5)*Log[x]^5 + (-3024*x^5 - 168*x^6)*Log[
x]^6 + (-168*x^6 - 4*x^7)*Log[x]^7 - 4*x^7*Log[x]^8,x]

[Out]

-1119744*x - 326592*x^2 + (46656*(12 + 7*x)^2)/7 + 653184*x^2*Log[x] - 93312*(12*x + 7*x^2)*Log[x] - 653184*x^
2*Log[x]^2 - 217728*x^3*Log[x]^3 - 45360*x^4*Log[x]^4 - 6048*x^5*Log[x]^5 - 504*x^6*Log[x]^6 - 24*x^7*Log[x]^7
 - (x^8*Log[x]^8)/2

Rule 9

Int[(a_)*((b_) + (c_.)*(x_)), x_Symbol] :> Simp[(a*(b + c*x)^2)/(2*c), x] /; FreeQ[{a, b, c}, x]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2305

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rule 2313

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(d +
 e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{a,
b, c, d, e, n, r}, x] && IGtQ[q, 0]

Rule 2353

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))

Rubi steps

integral=1119744x4x7log8(x)dx+(11197441306368x)log(x)dx+(1306368x653184x2)log2(x)dx+(653184x2181440x3)log3(x)dx+(181440x330240x4)log4(x)dx+(30240x43024x5)log5(x)dx+(3024x5168x6)log6(x)dx+(168x64x7)log7(x)dx=1119744x93312(12x+7x2)log(x)12x8log8(x)+4x7log7(x)dx93312(127x)dx+(1306368653184x)xlog2(x)dx+(653184181440x)x2log3(x)dx+(18144030240x)x3log4(x)dx+(302403024x)x4log5(x)dx+(3024168x)x5log6(x)dx+(1684x)x6log7(x)dx=1119744x+466567(12+7x)293312(12x+7x2)log(x)+12x8log7(x)12x8log8(x)72x7log6(x)dx+(1306368xlog2(x)653184x2log2(x))dx+(653184x2log3(x)181440x3log3(x))dx+(181440x3log4(x)30240x4log4(x))dx+(30240x4log5(x)3024x5log5(x))dx+(3024x5log6(x)168x6log6(x))dx+(168x6log7(x)4x7log7(x))dx=1119744x+466567(12+7x)293312(12x+7x2)log(x)716x8log6(x)+12x8log7(x)12x8log8(x)+218x7log5(x)dx4x7log7(x)dx168x6log6(x)dx168x6log7(x)dx3024x5log5(x)dx3024x5log6(x)dx30240x4log4(x)dx30240x4log5(x)dx181440x3log3(x)dx181440x3log4(x)dx653184x2log2(x)dx653184x2log3(x)dx1306368xlog2(x)dx=1119744x+466567(12+7x)293312(12x+7x2)log(x)653184x2log2(x)217728x3log2(x)217728x3log3(x)45360x4log3(x)45360x4log4(x)6048x5log4(x)6048x5log5(x)504x6log5(x)+2164x8log5(x)504x6log6(x)24x7log6(x)716x8log6(x)24x7log7(x)12x8log8(x)10564x7log4(x)dx+72x7log6(x)dx+144x6log5(x)dx+168x6log6(x)dx+2520x5log4(x)dx+3024x5log5(x)dx+24192x4log3(x)dx+30240x4log4(x)dx+136080x3log2(x)dx+181440x3log3(x)dx+435456x2log(x)dx+653184x2log2(x)dx+1306368xlog(x)dx=1119744x326592x248384x3+466567(12+7x)2+653184x2log(x)+145152x3log(x)93312(12x+7x2)log(x)653184x2log2(x)+34020x4log2(x)217728x3log3(x)+241925x5log3(x)45360x4log4(x)+420x6log4(x)105512x8log4(x)6048x5log5(x)+1447x7log5(x)+2164x8log5(x)504x6log6(x)24x7log7(x)12x8log8(x)+105128x7log3(x)dx218x7log5(x)dx7207x6log4(x)dx144x6log5(x)dx1680x5log3(x)dx2520x5log4(x)dx725765x4log2(x)dx24192x4log3(x)dx68040x3log(x)dx136080x3log2(x)dx435456x2log(x)dx=1119744x326592x2+8505x42+466567(12+7x)2+653184x2log(x)17010x4log(x)93312(12x+7x2)log(x)653184x2log2(x)7257625x5log2(x)217728x3log3(x)280x6log3(x)+105x8log3(x)102445360x4log4(x)72049x7log4(x)105512x8log4(x)6048x5log5(x)504x6log6(x)24x7log7(x)12x8log8(x)315x7log2(x)dx1024+10564x7log4(x)dx+288049x6log3(x)dx+7207x6log4(x)dx+840x5log2(x)dx+1680x5log3(x)dx+14515225x4log(x)dx+725765x4log2(x)dx+68040x3log(x)dx=1119744x326592x2145152x5625+466567(12+7x)2+653184x2log(x)+145152125x5log(x)93312(12x+7x2)log(x)653184x2log2(x)+140x6log2(x)315x8log2(x)8192217728x3log3(x)+2880343x7log3(x)+105x8log3(x)102445360x4log4(x)6048x5log5(x)504x6log6(x)24x7log7(x)12x8log8(x)+315x7log(x)dx4096105128x7log3(x)dx8640343x6log2(x)dx288049x6log3(x)dx280x5log(x)dx840x5log2(x)dx14515225x4log(x)dx=1119744x326592x2+70x69315x8262144+466567(12+7x)2+653184x2log(x)1403x6log(x)+315x8log(x)3276893312(12x+7x2)log(x)653184x2log2(x)8640x7log2(x)2401315x8log2(x)8192217728x3log3(x)45360x4log4(x)6048x5log5(x)504x6log6(x)24x7log7(x)12x8log8(x)+315x7log2(x)dx1024+17280x6log(x)dx2401+8640343x6log2(x)dx+280x5log(x)dx=1119744x326592x217280x7117649315x8262144+466567(12+7x)2+653184x2log(x)+17280x7log(x)16807+315x8log(x)3276893312(12x+7x2)log(x)653184x2log2(x)217728x3log3(x)45360x4log4(x)6048x5log5(x)504x6log6(x)24x7log7(x)12x8log8(x)315x7log(x)dx409617280x6log(x)dx2401=1119744x326592x2+466567(12+7x)2+653184x2log(x)93312(12x+7x2)log(x)653184x2log2(x)217728x3log3(x)45360x4log4(x)6048x5log5(x)504x6log6(x)24x7log7(x)12x8log8(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 12, normalized size = 0.92 12(6+xlog(x))8

Antiderivative was successfully verified.

[In]

Integrate[-1119744 + (-1119744 - 1306368*x)*Log[x] + (-1306368*x - 653184*x^2)*Log[x]^2 + (-653184*x^2 - 18144
0*x^3)*Log[x]^3 + (-181440*x^3 - 30240*x^4)*Log[x]^4 + (-30240*x^4 - 3024*x^5)*Log[x]^5 + (-3024*x^5 - 168*x^6
)*Log[x]^6 + (-168*x^6 - 4*x^7)*Log[x]^7 - 4*x^7*Log[x]^8,x]

[Out]

-1/2*(6 + x*Log[x])^8

________________________________________________________________________________________

fricas [B]  time = 0.50, size = 69, normalized size = 5.31 12x8log(x)824x7log(x)7504x6log(x)66048x5log(x)545360x4log(x)4217728x3log(x)3653184x2log(x)21119744xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4*x^7*log(x)^8+(-4*x^7-168*x^6)*log(x)^7+(-168*x^6-3024*x^5)*log(x)^6+(-3024*x^5-30240*x^4)*log(x)^
5+(-30240*x^4-181440*x^3)*log(x)^4+(-181440*x^3-653184*x^2)*log(x)^3+(-653184*x^2-1306368*x)*log(x)^2+(-130636
8*x-1119744)*log(x)-1119744,x, algorithm="fricas")

[Out]

-1/2*x^8*log(x)^8 - 24*x^7*log(x)^7 - 504*x^6*log(x)^6 - 6048*x^5*log(x)^5 - 45360*x^4*log(x)^4 - 217728*x^3*l
og(x)^3 - 653184*x^2*log(x)^2 - 1119744*x*log(x)

________________________________________________________________________________________

giac [B]  time = 0.14, size = 69, normalized size = 5.31 12x8log(x)824x7log(x)7504x6log(x)66048x5log(x)545360x4log(x)4217728x3log(x)3653184x2log(x)21119744xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4*x^7*log(x)^8+(-4*x^7-168*x^6)*log(x)^7+(-168*x^6-3024*x^5)*log(x)^6+(-3024*x^5-30240*x^4)*log(x)^
5+(-30240*x^4-181440*x^3)*log(x)^4+(-181440*x^3-653184*x^2)*log(x)^3+(-653184*x^2-1306368*x)*log(x)^2+(-130636
8*x-1119744)*log(x)-1119744,x, algorithm="giac")

[Out]

-1/2*x^8*log(x)^8 - 24*x^7*log(x)^7 - 504*x^6*log(x)^6 - 6048*x^5*log(x)^5 - 45360*x^4*log(x)^4 - 217728*x^3*l
og(x)^3 - 653184*x^2*log(x)^2 - 1119744*x*log(x)

________________________________________________________________________________________

maple [B]  time = 0.06, size = 70, normalized size = 5.38




method result size



default 6048x5ln(x)5504x6ln(x)624x7ln(x)7653184x2ln(x)2217728x3ln(x)31119744xln(x)45360x4ln(x)4x8ln(x)82 70
risch 6048x5ln(x)5504x6ln(x)624x7ln(x)7653184x2ln(x)2217728x3ln(x)31119744xln(x)45360x4ln(x)4x8ln(x)82 70



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-4*x^7*ln(x)^8+(-4*x^7-168*x^6)*ln(x)^7+(-168*x^6-3024*x^5)*ln(x)^6+(-3024*x^5-30240*x^4)*ln(x)^5+(-30240*
x^4-181440*x^3)*ln(x)^4+(-181440*x^3-653184*x^2)*ln(x)^3+(-653184*x^2-1306368*x)*ln(x)^2+(-1306368*x-1119744)*
ln(x)-1119744,x,method=_RETURNVERBOSE)

[Out]

-6048*x^5*ln(x)^5-504*x^6*ln(x)^6-24*x^7*ln(x)^7-653184*x^2*ln(x)^2-217728*x^3*ln(x)^3-1119744*x*ln(x)-45360*x
^4*ln(x)^4-1/2*x^8*ln(x)^8

________________________________________________________________________________________

maxima [B]  time = 0.52, size = 456, normalized size = 35.08 1262144(131072log(x)8131072log(x)7+114688log(x)686016log(x)5+53760log(x)426880log(x)3+10080log(x)22520log(x)+315)x81262144(131072log(x)7114688log(x)6+86016log(x)553760log(x)4+26880log(x)310080log(x)2+2520log(x)315)x824117649(117649log(x)7117649log(x)6+100842log(x)572030log(x)4+41160log(x)317640log(x)2+5040log(x)720)x724117649(117649log(x)6100842log(x)5+72030log(x)441160log(x)3+17640log(x)25040log(x)+720)x7149(324log(x)6324log(x)5+270log(x)4180log(x)3+90log(x)230log(x)+5)x6149(324log(x)5270log(x)4+180log(x)390log(x)2+30log(x)5)x66048625(625log(x)5625log(x)4+500log(x)3300log(x)2+120log(x)24)x56048625(625log(x)4500log(x)3+300log(x)2120log(x)+24)x528352(32log(x)432log(x)3+24log(x)212log(x)+3)x428352(32log(x)324log(x)2+12log(x)3)x424192(9log(x)39log(x)2+6log(x)2)x324192(9log(x)26log(x)+2)x3326592(2log(x)22log(x)+1)x2+326592x293312(7x2+12x)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4*x^7*log(x)^8+(-4*x^7-168*x^6)*log(x)^7+(-168*x^6-3024*x^5)*log(x)^6+(-3024*x^5-30240*x^4)*log(x)^
5+(-30240*x^4-181440*x^3)*log(x)^4+(-181440*x^3-653184*x^2)*log(x)^3+(-653184*x^2-1306368*x)*log(x)^2+(-130636
8*x-1119744)*log(x)-1119744,x, algorithm="maxima")

[Out]

-1/262144*(131072*log(x)^8 - 131072*log(x)^7 + 114688*log(x)^6 - 86016*log(x)^5 + 53760*log(x)^4 - 26880*log(x
)^3 + 10080*log(x)^2 - 2520*log(x) + 315)*x^8 - 1/262144*(131072*log(x)^7 - 114688*log(x)^6 + 86016*log(x)^5 -
 53760*log(x)^4 + 26880*log(x)^3 - 10080*log(x)^2 + 2520*log(x) - 315)*x^8 - 24/117649*(117649*log(x)^7 - 1176
49*log(x)^6 + 100842*log(x)^5 - 72030*log(x)^4 + 41160*log(x)^3 - 17640*log(x)^2 + 5040*log(x) - 720)*x^7 - 24
/117649*(117649*log(x)^6 - 100842*log(x)^5 + 72030*log(x)^4 - 41160*log(x)^3 + 17640*log(x)^2 - 5040*log(x) +
720)*x^7 - 14/9*(324*log(x)^6 - 324*log(x)^5 + 270*log(x)^4 - 180*log(x)^3 + 90*log(x)^2 - 30*log(x) + 5)*x^6
- 14/9*(324*log(x)^5 - 270*log(x)^4 + 180*log(x)^3 - 90*log(x)^2 + 30*log(x) - 5)*x^6 - 6048/625*(625*log(x)^5
 - 625*log(x)^4 + 500*log(x)^3 - 300*log(x)^2 + 120*log(x) - 24)*x^5 - 6048/625*(625*log(x)^4 - 500*log(x)^3 +
 300*log(x)^2 - 120*log(x) + 24)*x^5 - 2835/2*(32*log(x)^4 - 32*log(x)^3 + 24*log(x)^2 - 12*log(x) + 3)*x^4 -
2835/2*(32*log(x)^3 - 24*log(x)^2 + 12*log(x) - 3)*x^4 - 24192*(9*log(x)^3 - 9*log(x)^2 + 6*log(x) - 2)*x^3 -
24192*(9*log(x)^2 - 6*log(x) + 2)*x^3 - 326592*(2*log(x)^2 - 2*log(x) + 1)*x^2 + 326592*x^2 - 93312*(7*x^2 + 1
2*x)*log(x)

________________________________________________________________________________________

mupad [B]  time = 0.34, size = 69, normalized size = 5.31 x8ln(x)8224x7ln(x)7504x6ln(x)66048x5ln(x)545360x4ln(x)4217728x3ln(x)3653184x2ln(x)21119744xln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(- log(x)^2*(1306368*x + 653184*x^2) - log(x)^7*(168*x^6 + 4*x^7) - log(x)^6*(3024*x^5 + 168*x^6) - log(x)^
5*(30240*x^4 + 3024*x^5) - log(x)^4*(181440*x^3 + 30240*x^4) - log(x)^3*(653184*x^2 + 181440*x^3) - 4*x^7*log(
x)^8 - log(x)*(1306368*x + 1119744) - 1119744,x)

[Out]

- 653184*x^2*log(x)^2 - 217728*x^3*log(x)^3 - 45360*x^4*log(x)^4 - 6048*x^5*log(x)^5 - 504*x^6*log(x)^6 - 24*x
^7*log(x)^7 - (x^8*log(x)^8)/2 - 1119744*x*log(x)

________________________________________________________________________________________

sympy [B]  time = 0.21, size = 78, normalized size = 6.00 x8log(x)8224x7log(x)7504x6log(x)66048x5log(x)545360x4log(x)4217728x3log(x)3653184x2log(x)21119744xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4*x**7*ln(x)**8+(-4*x**7-168*x**6)*ln(x)**7+(-168*x**6-3024*x**5)*ln(x)**6+(-3024*x**5-30240*x**4)*
ln(x)**5+(-30240*x**4-181440*x**3)*ln(x)**4+(-181440*x**3-653184*x**2)*ln(x)**3+(-653184*x**2-1306368*x)*ln(x)
**2+(-1306368*x-1119744)*ln(x)-1119744,x)

[Out]

-x**8*log(x)**8/2 - 24*x**7*log(x)**7 - 504*x**6*log(x)**6 - 6048*x**5*log(x)**5 - 45360*x**4*log(x)**4 - 2177
28*x**3*log(x)**3 - 653184*x**2*log(x)**2 - 1119744*x*log(x)

________________________________________________________________________________________