Optimal. Leaf size=29 \[ \frac {1}{4} e^{3+x+\left (-e^{x^2}+\log \left (\frac {5}{3+e^x}\right )\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 3.15, antiderivative size = 193, normalized size of antiderivative = 6.66, number of steps used = 1, number of rules used = 1, integrand size = 135, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.007, Rules used = {2288} \begin {gather*} \frac {5^{-2 e^{x^2}} \left (\frac {1}{e^x+3}\right )^{1-2 e^{x^2}} e^{e^{2 x^2}+\log ^2\left (\frac {5}{e^x+3}\right )+3} \left (2 e^{2 x^2} \left (3 e^x x+e^{2 x} x\right )+e^{x^2+2 x}-\left (2 e^{x^2} \left (3 e^x x+e^{2 x} x\right )+e^{2 x}\right ) \log \left (\frac {5}{e^x+3}\right )\right )}{4 \left (2 e^{2 x^2} x+\frac {e^{x^2+x}}{e^x+3}-2 e^{x^2} x \log \left (\frac {5}{e^x+3}\right )-\frac {e^x \log \left (\frac {5}{e^x+3}\right )}{e^x+3}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {5^{-2 e^{x^2}} e^{3+e^{2 x^2}+\log ^2\left (\frac {5}{3+e^x}\right )} \left (\frac {1}{3+e^x}\right )^{1-2 e^{x^2}} \left (e^{2 x+x^2}+2 e^{2 x^2} \left (3 e^x x+e^{2 x} x\right )-\left (e^{2 x}+2 e^{x^2} \left (3 e^x x+e^{2 x} x\right )\right ) \log \left (\frac {5}{3+e^x}\right )\right )}{4 \left (\frac {e^{x+x^2}}{3+e^x}+2 e^{2 x^2} x-\frac {e^x \log \left (\frac {5}{3+e^x}\right )}{3+e^x}-2 e^{x^2} x \log \left (\frac {5}{3+e^x}\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.55, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{3+e^{2 x^2}-2 e^{x^2} \log \left (\frac {5}{3+e^x}\right )+\log ^2\left (\frac {5}{3+e^x}\right )} \left (3 e^x+e^{2 x}+2 e^{2 x+x^2}+e^{2 x^2} \left (12 e^x x+4 e^{2 x} x\right )+\left (-2 e^{2 x}+e^{x^2} \left (-12 e^x x-4 e^{2 x} x\right )\right ) \log \left (\frac {5}{3+e^x}\right )\right )}{12+4 e^x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.89, size = 62, normalized size = 2.14 \begin {gather*} \frac {1}{4} \, e^{\left ({\left (e^{\left (4 \, x\right )} \log \left (\frac {5}{e^{x} + 3}\right )^{2} - 2 \, e^{\left (x^{2} + 4 \, x\right )} \log \left (\frac {5}{e^{x} + 3}\right ) + e^{\left (2 \, x^{2} + 4 \, x\right )} + 3 \, e^{\left (4 \, x\right )}\right )} e^{\left (-4 \, x\right )} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, {\left (x e^{\left (2 \, x\right )} + 3 \, x e^{x}\right )} e^{\left (2 \, x^{2}\right )} - 2 \, {\left (2 \, {\left (x e^{\left (2 \, x\right )} + 3 \, x e^{x}\right )} e^{\left (x^{2}\right )} + e^{\left (2 \, x\right )}\right )} \log \left (\frac {5}{e^{x} + 3}\right ) + 2 \, e^{\left (x^{2} + 2 \, x\right )} + e^{\left (2 \, x\right )} + 3 \, e^{x}\right )} e^{\left (-2 \, e^{\left (x^{2}\right )} \log \left (\frac {5}{e^{x} + 3}\right ) + \log \left (\frac {5}{e^{x} + 3}\right )^{2} + e^{\left (2 \, x^{2}\right )} + 3\right )}}{4 \, {\left (e^{x} + 3\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 50, normalized size = 1.72
method | result | size |
risch | \(\frac {\left (3+{\mathrm e}^{x}\right )^{-2 \ln \relax (5)} \left (3+{\mathrm e}^{x}\right )^{2 \,{\mathrm e}^{x^{2}}} \left (\frac {1}{25}\right )^{{\mathrm e}^{x^{2}}} {\mathrm e}^{x +3+\ln \relax (5)^{2}+\ln \left (3+{\mathrm e}^{x}\right )^{2}+{\mathrm e}^{2 x^{2}}}}{4}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 51, normalized size = 1.76 \begin {gather*} \frac {1}{4} \, e^{\left (-2 \, e^{\left (x^{2}\right )} \log \relax (5) + \log \relax (5)^{2} + 2 \, e^{\left (x^{2}\right )} \log \left (e^{x} + 3\right ) - 2 \, \log \relax (5) \log \left (e^{x} + 3\right ) + \log \left (e^{x} + 3\right )^{2} + x + e^{\left (2 \, x^{2}\right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.98, size = 48, normalized size = 1.66 \begin {gather*} \frac {{\left (\frac {1}{25}\right )}^{{\mathrm {e}}^{x^2}}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x^2}}\,{\mathrm {e}}^{{\ln \relax (5)}^2}\,{\mathrm {e}}^3\,{\mathrm {e}}^{{\ln \left ({\mathrm {e}}^x+3\right )}^2}\,{\mathrm {e}}^x\,{\left ({\mathrm {e}}^x+3\right )}^{2\,{\mathrm {e}}^{x^2}-2\,\ln \relax (5)}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________