Optimal. Leaf size=28 \[ -e^3+x+\log (x) \log \left (-e^{-x+x \log (x)}+x \log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-x-x^2\right ) \log (x)-x \log ^2(x)+e^{-x+x \log (x)} \left (x+x \log ^2(x)\right )+\left (e^{-x+x \log (x)}-x \log (x)\right ) \log \left (-e^{-x+x \log (x)}+x \log (x)\right )}{e^{-x+x \log (x)} x-x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (\left (-x-x^2\right ) \log (x)-x \log ^2(x)+e^{-x+x \log (x)} \left (x+x \log ^2(x)\right )+\left (e^{-x+x \log (x)}-x \log (x)\right ) \log \left (-e^{-x+x \log (x)}+x \log (x)\right )\right )}{x \left (x^x-e^x x \log (x)\right )} \, dx\\ &=\int \left (-\frac {x^x}{-x^x+e^x x \log (x)}+\frac {e^x \log (x)}{-x^x+e^x x \log (x)}+\frac {e^x x \log (x)}{-x^x+e^x x \log (x)}+\frac {e^x \log ^2(x)}{-x^x+e^x x \log (x)}-\frac {x^x \log ^2(x)}{-x^x+e^x x \log (x)}-\frac {x^{-1+x} \log \left (-e^{-x} x^x+x \log (x)\right )}{-x^x+e^x x \log (x)}+\frac {e^x \log (x) \log \left (-e^{-x} x^x+x \log (x)\right )}{-x^x+e^x x \log (x)}\right ) \, dx\\ &=-\int \frac {x^x}{-x^x+e^x x \log (x)} \, dx+\int \frac {e^x \log (x)}{-x^x+e^x x \log (x)} \, dx+\int \frac {e^x x \log (x)}{-x^x+e^x x \log (x)} \, dx+\int \frac {e^x \log ^2(x)}{-x^x+e^x x \log (x)} \, dx-\int \frac {x^x \log ^2(x)}{-x^x+e^x x \log (x)} \, dx-\int \frac {x^{-1+x} \log \left (-e^{-x} x^x+x \log (x)\right )}{-x^x+e^x x \log (x)} \, dx+\int \frac {e^x \log (x) \log \left (-e^{-x} x^x+x \log (x)\right )}{-x^x+e^x x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 21, normalized size = 0.75 \begin {gather*} x+\log (x) \log \left (-e^{-x} x^x+x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 22, normalized size = 0.79 \begin {gather*} \log \left (x \log \relax (x) - e^{\left (x \log \relax (x) - x\right )}\right ) \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.75
method | result | size |
risch | \(\ln \left (-x^{x} {\mathrm e}^{-x}+x \ln \relax (x )\right ) \ln \relax (x )+x\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 23, normalized size = 0.82 \begin {gather*} -x \log \relax (x) + \log \left (x e^{x} \log \relax (x) - x^{x}\right ) \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.93, size = 20, normalized size = 0.71 \begin {gather*} x+\ln \left (x\,\ln \relax (x)-x^x\,{\mathrm {e}}^{-x}\right )\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.73, size = 19, normalized size = 0.68 \begin {gather*} x + \log {\relax (x )} \log {\left (x \log {\relax (x )} - e^{x \log {\relax (x )} - x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________