Optimal. Leaf size=27 \[ 2+x (-3+x+x (x+\log (x)))-\left (x+\log \left (e^x+2 x\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10 x+2 x^2+6 x^3+e^x \left (-3-x+3 x^2\right )+\left (2 e^x x+4 x^2\right ) \log (x)+\left (-4-4 e^x-4 x\right ) \log \left (e^x+2 x\right )}{e^x+2 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3-x+3 x^2+2 x \log (x)-4 \log \left (e^x+2 x\right )+\frac {4 (-1+x) \left (x+\log \left (e^x+2 x\right )\right )}{e^x+2 x}\right ) \, dx\\ &=-3 x-\frac {x^2}{2}+x^3+2 \int x \log (x) \, dx-4 \int \log \left (e^x+2 x\right ) \, dx+4 \int \frac {(-1+x) \left (x+\log \left (e^x+2 x\right )\right )}{e^x+2 x} \, dx\\ &=-3 x-x^2+x^3+x^2 \log (x)-4 x \log \left (e^x+2 x\right )+4 \int \frac {\left (2+e^x\right ) x}{e^x+2 x} \, dx+4 \int \left (-\frac {x+\log \left (e^x+2 x\right )}{e^x+2 x}+\frac {x \left (x+\log \left (e^x+2 x\right )\right )}{e^x+2 x}\right ) \, dx\\ &=-3 x-x^2+x^3+x^2 \log (x)-4 x \log \left (e^x+2 x\right )+4 \int \left (x-\frac {2 (-1+x) x}{e^x+2 x}\right ) \, dx-4 \int \frac {x+\log \left (e^x+2 x\right )}{e^x+2 x} \, dx+4 \int \frac {x \left (x+\log \left (e^x+2 x\right )\right )}{e^x+2 x} \, dx\\ &=-3 x+x^2+x^3+x^2 \log (x)-4 x \log \left (e^x+2 x\right )-4 \int \left (\frac {x}{e^x+2 x}+\frac {\log \left (e^x+2 x\right )}{e^x+2 x}\right ) \, dx+4 \int \left (\frac {x^2}{e^x+2 x}+\frac {x \log \left (e^x+2 x\right )}{e^x+2 x}\right ) \, dx-8 \int \frac {(-1+x) x}{e^x+2 x} \, dx\\ &=-3 x+x^2+x^3+x^2 \log (x)-4 x \log \left (e^x+2 x\right )-4 \int \frac {x}{e^x+2 x} \, dx+4 \int \frac {x^2}{e^x+2 x} \, dx-4 \int \frac {\log \left (e^x+2 x\right )}{e^x+2 x} \, dx+4 \int \frac {x \log \left (e^x+2 x\right )}{e^x+2 x} \, dx-8 \int \left (-\frac {x}{e^x+2 x}+\frac {x^2}{e^x+2 x}\right ) \, dx\\ &=-3 x+x^2+x^3+x^2 \log (x)-4 x \log \left (e^x+2 x\right )-4 \int \frac {x}{e^x+2 x} \, dx+4 \int \frac {x^2}{e^x+2 x} \, dx+4 \int \frac {\left (2+e^x\right ) \int \frac {1}{e^x+2 x} \, dx}{e^x+2 x} \, dx-4 \int \frac {\left (2+e^x\right ) \int \frac {x}{e^x+2 x} \, dx}{e^x+2 x} \, dx+8 \int \frac {x}{e^x+2 x} \, dx-8 \int \frac {x^2}{e^x+2 x} \, dx-\left (4 \log \left (e^x+2 x\right )\right ) \int \frac {1}{e^x+2 x} \, dx+\left (4 \log \left (e^x+2 x\right )\right ) \int \frac {x}{e^x+2 x} \, dx\\ &=-3 x+x^2+x^3+x^2 \log (x)-4 x \log \left (e^x+2 x\right )-4 \int \frac {x}{e^x+2 x} \, dx+4 \int \frac {x^2}{e^x+2 x} \, dx+4 \int \left (\int \frac {1}{e^x+2 x} \, dx-\frac {2 (-1+x) \int \frac {1}{e^x+2 x} \, dx}{e^x+2 x}\right ) \, dx-4 \int \left (\int \frac {x}{e^x+2 x} \, dx-\frac {2 (-1+x) \int \frac {x}{e^x+2 x} \, dx}{e^x+2 x}\right ) \, dx+8 \int \frac {x}{e^x+2 x} \, dx-8 \int \frac {x^2}{e^x+2 x} \, dx-\left (4 \log \left (e^x+2 x\right )\right ) \int \frac {1}{e^x+2 x} \, dx+\left (4 \log \left (e^x+2 x\right )\right ) \int \frac {x}{e^x+2 x} \, dx\\ &=-3 x+x^2+x^3+x^2 \log (x)-4 x \log \left (e^x+2 x\right )-4 \int \frac {x}{e^x+2 x} \, dx+4 \int \frac {x^2}{e^x+2 x} \, dx+4 \int \left (\int \frac {1}{e^x+2 x} \, dx\right ) \, dx-4 \int \left (\int \frac {x}{e^x+2 x} \, dx\right ) \, dx+8 \int \frac {x}{e^x+2 x} \, dx-8 \int \frac {x^2}{e^x+2 x} \, dx-8 \int \frac {(-1+x) \int \frac {1}{e^x+2 x} \, dx}{e^x+2 x} \, dx+8 \int \frac {(-1+x) \int \frac {x}{e^x+2 x} \, dx}{e^x+2 x} \, dx-\left (4 \log \left (e^x+2 x\right )\right ) \int \frac {1}{e^x+2 x} \, dx+\left (4 \log \left (e^x+2 x\right )\right ) \int \frac {x}{e^x+2 x} \, dx\\ &=-3 x+x^2+x^3+x^2 \log (x)-4 x \log \left (e^x+2 x\right )-4 \int \frac {x}{e^x+2 x} \, dx+4 \int \frac {x^2}{e^x+2 x} \, dx+4 \int \left (\int \frac {1}{e^x+2 x} \, dx\right ) \, dx-4 \int \left (\int \frac {x}{e^x+2 x} \, dx\right ) \, dx+8 \int \frac {x}{e^x+2 x} \, dx-8 \int \frac {x^2}{e^x+2 x} \, dx-8 \int \left (-\frac {\int \frac {1}{e^x+2 x} \, dx}{e^x+2 x}+\frac {x \int \frac {1}{e^x+2 x} \, dx}{e^x+2 x}\right ) \, dx+8 \int \left (-\frac {\int \frac {x}{e^x+2 x} \, dx}{e^x+2 x}+\frac {x \int \frac {x}{e^x+2 x} \, dx}{e^x+2 x}\right ) \, dx-\left (4 \log \left (e^x+2 x\right )\right ) \int \frac {1}{e^x+2 x} \, dx+\left (4 \log \left (e^x+2 x\right )\right ) \int \frac {x}{e^x+2 x} \, dx\\ &=-3 x+x^2+x^3+x^2 \log (x)-4 x \log \left (e^x+2 x\right )-4 \int \frac {x}{e^x+2 x} \, dx+4 \int \frac {x^2}{e^x+2 x} \, dx+4 \int \left (\int \frac {1}{e^x+2 x} \, dx\right ) \, dx-4 \int \left (\int \frac {x}{e^x+2 x} \, dx\right ) \, dx+8 \int \frac {x}{e^x+2 x} \, dx-8 \int \frac {x^2}{e^x+2 x} \, dx+8 \int \frac {\int \frac {1}{e^x+2 x} \, dx}{e^x+2 x} \, dx-8 \int \frac {x \int \frac {1}{e^x+2 x} \, dx}{e^x+2 x} \, dx-8 \int \frac {\int \frac {x}{e^x+2 x} \, dx}{e^x+2 x} \, dx+8 \int \frac {x \int \frac {x}{e^x+2 x} \, dx}{e^x+2 x} \, dx-\left (4 \log \left (e^x+2 x\right )\right ) \int \frac {1}{e^x+2 x} \, dx+\left (4 \log \left (e^x+2 x\right )\right ) \int \frac {x}{e^x+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 36, normalized size = 1.33 \begin {gather*} -3 x+x^3+x^2 \log (x)-2 x \log \left (e^x+2 x\right )-\log ^2\left (e^x+2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 34, normalized size = 1.26 \begin {gather*} x^{3} + x^{2} \log \relax (x) - 2 \, x \log \left (2 \, x + e^{x}\right ) - \log \left (2 \, x + e^{x}\right )^{2} - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {6 \, x^{3} + 2 \, x^{2} + {\left (3 \, x^{2} - x - 3\right )} e^{x} - 4 \, {\left (x + e^{x} + 1\right )} \log \left (2 \, x + e^{x}\right ) + 2 \, {\left (2 \, x^{2} + x e^{x}\right )} \log \relax (x) - 10 \, x}{2 \, x + e^{x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 35, normalized size = 1.30
method | result | size |
risch | \(x^{3}+x^{2} \ln \relax (x )-2 \ln \left ({\mathrm e}^{x}+2 x \right ) x -\ln \left ({\mathrm e}^{x}+2 x \right )^{2}-3 x\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 34, normalized size = 1.26 \begin {gather*} x^{3} + x^{2} \log \relax (x) - 2 \, x \log \left (2 \, x + e^{x}\right ) - \log \left (2 \, x + e^{x}\right )^{2} - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.89, size = 34, normalized size = 1.26 \begin {gather*} x^2\,\ln \relax (x)-3\,x-2\,x\,\ln \left (2\,x+{\mathrm {e}}^x\right )+x^3-{\ln \left (2\,x+{\mathrm {e}}^x\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 34, normalized size = 1.26 \begin {gather*} x^{3} + x^{2} \log {\relax (x )} - 2 x \log {\left (2 x + e^{x} \right )} - 3 x - \log {\left (2 x + e^{x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________