Optimal. Leaf size=24 \[ e^{2 x-x \left (\frac {1}{2} (-2+x)+x^2+\log (16)\right )} x \]
________________________________________________________________________________________
Rubi [B] time = 0.13, antiderivative size = 63, normalized size of antiderivative = 2.62, number of steps used = 2, number of rules used = 2, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {6, 2288} \begin {gather*} -\frac {\left (3 x^3+x^2-x (3-\log (16))\right ) \exp \left (\frac {1}{2} \left (-2 x^3-x^2+4 x-2 x \log (16)\right )+x\right )}{-3 x^2-x+3-\log (16)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{x+\frac {1}{2} \left (4 x-x^2-2 x^3-2 x \log (16)\right )} \left (1-x^2-3 x^3+x (3-\log (16))\right ) \, dx\\ &=-\frac {e^{x+\frac {1}{2} \left (4 x-x^2-2 x^3-2 x \log (16)\right )} \left (x^2+3 x^3-x (3-\log (16))\right )}{3-x-3 x^2-\log (16)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 22, normalized size = 0.92 \begin {gather*} 16^{-x} e^{-\frac {1}{2} x \left (-6+x+2 x^2\right )} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.41, size = 22, normalized size = 0.92 \begin {gather*} x e^{\left (-x^{3} - \frac {1}{2} \, x^{2} - 4 \, x \log \relax (2) + 3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 22, normalized size = 0.92 \begin {gather*} x e^{\left (-x^{3} - \frac {1}{2} \, x^{2} - 4 \, x \log \relax (2) + 3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 18, normalized size = 0.75
method | result | size |
risch | \(x \left (\frac {1}{16}\right )^{x} {\mathrm e}^{-\frac {x \left (2+x \right ) \left (2 x -3\right )}{2}}\) | \(18\) |
gosper | \({\mathrm e}^{3 x -4 x \ln \relax (2)-x^{3}-\frac {x^{2}}{2}} x\) | \(23\) |
norman | \({\mathrm e}^{x} {\mathrm e}^{-4 x \ln \relax (2)-x^{3}-\frac {x^{2}}{2}+2 x} x\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 22, normalized size = 0.92 \begin {gather*} x e^{\left (-x^{3} - \frac {1}{2} \, x^{2} - 4 \, x \log \relax (2) + 3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -{\mathrm {e}}^{2\,x-4\,x\,\ln \relax (2)-\frac {x^2}{2}-x^3}\,{\mathrm {e}}^x\,\left (4\,x\,\ln \relax (2)-3\,x+x^2+3\,x^3-1\right ) \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 24, normalized size = 1.00 \begin {gather*} x e^{x} e^{- x^{3} - \frac {x^{2}}{2} - 4 x \log {\relax (2 )} + 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________