Optimal. Leaf size=18 \[ \frac {e^{16-4 x^2} x^4}{(1+x)^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 25, normalized size of antiderivative = 1.39, number of steps used = 2, number of rules used = 2, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {1594, 2288} \begin {gather*} \frac {e^{16-4 x^2} x^2 \left (x^3+x^2\right )}{(x+1)^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1594
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{16-4 x^2} x^3 \left (4-8 x^2-8 x^3\right )}{(1+x)^5} \, dx\\ &=\frac {e^{16-4 x^2} x^2 \left (x^2+x^3\right )}{(1+x)^5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 1.00 \begin {gather*} \frac {e^{16-4 x^2} x^4}{(1+x)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 18, normalized size = 1.00 \begin {gather*} x^{4} e^{\left (-4 \, x^{2} - 4 \, \log \left (x + 1\right ) + 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 32, normalized size = 1.78 \begin {gather*} \frac {x^{4} e^{\left (-4 \, x^{2} + 16\right )}}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.53, size = 19, normalized size = 1.06
method | result | size |
risch | \(\frac {x^{4} {\mathrm e}^{-4 \left (x -2\right ) \left (2+x \right )}}{\left (x +1\right )^{4}}\) | \(19\) |
gosper | \(\frac {x^{4} {\mathrm e}^{-4 x^{2}+16}}{\left (x +1\right )^{4}}\) | \(21\) |
meijerg | \(-\frac {8 \,{\mathrm e}^{16} \left (x +1\right )^{-4+4 \,{\mathrm e}^{-4 x^{2}}} \hypergeom \left (\left [7, 1+4 \,{\mathrm e}^{-4 x^{2}}\right ], \relax [8], -x \right ) x^{7} {\mathrm e}^{-4 x^{2}}}{7}-\frac {4 \,{\mathrm e}^{16} \left (x +1\right )^{-4+4 \,{\mathrm e}^{-4 x^{2}}} \hypergeom \left (\left [6, 1+4 \,{\mathrm e}^{-4 x^{2}}\right ], \relax [7], -x \right ) x^{6} {\mathrm e}^{-4 x^{2}}}{3}+{\mathrm e}^{16} \left (x +1\right )^{-4+4 \,{\mathrm e}^{-4 x^{2}}} \hypergeom \left (\left [4, 1+4 \,{\mathrm e}^{-4 x^{2}}\right ], \relax [5], -x \right ) x^{4} {\mathrm e}^{-4 x^{2}}\) | \(136\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 32, normalized size = 1.78 \begin {gather*} \frac {x^{4} e^{\left (-4 \, x^{2} + 16\right )}}{x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 17, normalized size = 0.94 \begin {gather*} \frac {x^4\,{\mathrm {e}}^{16}\,{\mathrm {e}}^{-4\,x^2}}{{\left (x+1\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 29, normalized size = 1.61 \begin {gather*} \frac {x^{4} e^{16 - 4 x^{2}}}{x^{4} + 4 x^{3} + 6 x^{2} + 4 x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________