3.32.42 e164x2(4x38x58x6)(1+x)5dx

Optimal. Leaf size=18 e164x2x4(1+x)4

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 25, normalized size of antiderivative = 1.39, number of steps used = 2, number of rules used = 2, integrand size = 31, number of rulesintegrand size = 0.065, Rules used = {1594, 2288} e164x2x2(x3+x2)(x+1)5

Antiderivative was successfully verified.

[In]

Int[(E^(16 - 4*x^2)*(4*x^3 - 8*x^5 - 8*x^6))/(1 + x)^5,x]

[Out]

(E^(16 - 4*x^2)*x^2*(x^2 + x^3))/(1 + x)^5

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=e164x2x3(48x28x3)(1+x)5dx=e164x2x2(x2+x3)(1+x)5

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 18, normalized size = 1.00 e164x2x4(1+x)4

Antiderivative was successfully verified.

[In]

Integrate[(E^(16 - 4*x^2)*(4*x^3 - 8*x^5 - 8*x^6))/(1 + x)^5,x]

[Out]

(E^(16 - 4*x^2)*x^4)/(1 + x)^4

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 18, normalized size = 1.00 x4e(4x24log(x+1)+16)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x^6-8*x^5+4*x^3)*exp(-log(x+1)-x^2+4)^4/(x+1),x, algorithm="fricas")

[Out]

x^4*e^(-4*x^2 - 4*log(x + 1) + 16)

________________________________________________________________________________________

giac [A]  time = 0.20, size = 32, normalized size = 1.78 x4e(4x2+16)x4+4x3+6x2+4x+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x^6-8*x^5+4*x^3)*exp(-log(x+1)-x^2+4)^4/(x+1),x, algorithm="giac")

[Out]

x^4*e^(-4*x^2 + 16)/(x^4 + 4*x^3 + 6*x^2 + 4*x + 1)

________________________________________________________________________________________

maple [A]  time = 0.53, size = 19, normalized size = 1.06




method result size



risch x4e4(x2)(2+x)(x+1)4 19
gosper x4e4x2+16(x+1)4 21
meijerg 8e16(x+1)4+4e4x2hypergeom([7,1+4e4x2],[8],x)x7e4x274e16(x+1)4+4e4x2hypergeom([6,1+4e4x2],[7],x)x6e4x23+e16(x+1)4+4e4x2hypergeom([4,1+4e4x2],[5],x)x4e4x2 136



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-8*x^6-8*x^5+4*x^3)*exp(-ln(x+1)-x^2+4)^4/(x+1),x,method=_RETURNVERBOSE)

[Out]

x^4/(x+1)^4*exp(-4*(x-2)*(2+x))

________________________________________________________________________________________

maxima [A]  time = 0.73, size = 32, normalized size = 1.78 x4e(4x2+16)x4+4x3+6x2+4x+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x^6-8*x^5+4*x^3)*exp(-log(x+1)-x^2+4)^4/(x+1),x, algorithm="maxima")

[Out]

x^4*e^(-4*x^2 + 16)/(x^4 + 4*x^3 + 6*x^2 + 4*x + 1)

________________________________________________________________________________________

mupad [B]  time = 0.15, size = 17, normalized size = 0.94 x4e16e4x2(x+1)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(16 - 4*x^2 - 4*log(x + 1))*(8*x^5 - 4*x^3 + 8*x^6))/(x + 1),x)

[Out]

(x^4*exp(16)*exp(-4*x^2))/(x + 1)^4

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 29, normalized size = 1.61 x4e164x2x4+4x3+6x2+4x+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x**6-8*x**5+4*x**3)*exp(-ln(x+1)-x**2+4)**4/(x+1),x)

[Out]

x**4*exp(16 - 4*x**2)/(x**4 + 4*x**3 + 6*x**2 + 4*x + 1)

________________________________________________________________________________________