Optimal. Leaf size=32 \[ \log \left (\frac {e^5}{-e^{\left (5-\frac {x}{5}\right )^2}+\log \left (\frac {2}{x}\right )}-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 28.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25 e^5+25 e^{\frac {2}{25} \left (625-50 x+x^2\right )}+e^{5+\frac {1}{25} \left (625-50 x+x^2\right )} \left (50 x-2 x^2\right )-50 e^{\frac {1}{25} \left (625-50 x+x^2\right )} \log \left (\frac {2}{x}\right )+25 \log ^2\left (\frac {2}{x}\right )}{25 e^{5+\frac {1}{25} \left (625-50 x+x^2\right )} x-25 e^5 x \log \left (\frac {2}{x}\right )+\left (25 e^{\frac {2}{25} \left (625-50 x+x^2\right )} x-50 e^{\frac {1}{25} \left (625-50 x+x^2\right )} x \log \left (\frac {2}{x}\right )+25 x \log ^2\left (\frac {2}{x}\right )\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{4 x} \left (-25 e^5+25 e^{\frac {2}{25} \left (625-50 x+x^2\right )}+e^{5+\frac {1}{25} \left (625-50 x+x^2\right )} \left (50 x-2 x^2\right )-50 e^{\frac {1}{25} \left (625-50 x+x^2\right )} \log \left (\frac {2}{x}\right )+25 \log ^2\left (\frac {2}{x}\right )\right )}{25 x \left (e^{25+\frac {x^2}{25}}-e^{2 x} \log \left (\frac {2}{x}\right )\right ) \left (e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)\right )} \, dx\\ &=\frac {1}{25} \int \frac {e^{4 x} \left (-25 e^5+25 e^{\frac {2}{25} \left (625-50 x+x^2\right )}+e^{5+\frac {1}{25} \left (625-50 x+x^2\right )} \left (50 x-2 x^2\right )-50 e^{\frac {1}{25} \left (625-50 x+x^2\right )} \log \left (\frac {2}{x}\right )+25 \log ^2\left (\frac {2}{x}\right )\right )}{x \left (e^{25+\frac {x^2}{25}}-e^{2 x} \log \left (\frac {2}{x}\right )\right ) \left (e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)\right )} \, dx\\ &=\frac {1}{25} \int \left (-\frac {e^{4 x} \left (25-50 x \log \left (\frac {2}{x}\right )+2 x^2 \log \left (\frac {2}{x}\right )\right )}{x \left (e^{\frac {1}{25} (25+x)^2}-e^{4 x} \log \left (\frac {2}{x}\right )\right )}+\frac {25}{x \log (x)}+\frac {e^{2 x} \left (25 e^5-50 e^5 x \log (x)+2 e^5 x^2 \log (x)-25 \log ^2(x)+50 x \log \left (\frac {2}{x}\right ) \log ^2(x)-2 x^2 \log \left (\frac {2}{x}\right ) \log ^2(x)\right )}{x \log (x) \left (-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)\right )}\right ) \, dx\\ &=-\left (\frac {1}{25} \int \frac {e^{4 x} \left (25-50 x \log \left (\frac {2}{x}\right )+2 x^2 \log \left (\frac {2}{x}\right )\right )}{x \left (e^{\frac {1}{25} (25+x)^2}-e^{4 x} \log \left (\frac {2}{x}\right )\right )} \, dx\right )+\frac {1}{25} \int \frac {e^{2 x} \left (25 e^5-50 e^5 x \log (x)+2 e^5 x^2 \log (x)-25 \log ^2(x)+50 x \log \left (\frac {2}{x}\right ) \log ^2(x)-2 x^2 \log \left (\frac {2}{x}\right ) \log ^2(x)\right )}{x \log (x) \left (-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)\right )} \, dx+\int \frac {1}{x \log (x)} \, dx\\ &=-\left (\frac {1}{25} \int \frac {e^{4 x} \left (25+2 (-25+x) x \log \left (\frac {2}{x}\right )\right )}{x \left (e^{\frac {1}{25} (25+x)^2}-e^{4 x} \log \left (\frac {2}{x}\right )\right )} \, dx\right )+\frac {1}{25} \int \left (\frac {50 e^{5+2 x}}{e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)}-\frac {2 e^{5+2 x} x}{e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)}-\frac {25 e^{5+2 x}}{x \log (x) \left (e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)\right )}-\frac {25 e^{2 x} \log (x)}{x \left (-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)\right )}+\frac {50 e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)}{-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)}-\frac {2 e^{2 x} x \log \left (\frac {2}{x}\right ) \log (x)}{-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)}\right ) \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=\log (\log (x))-\frac {1}{25} \int \left (\frac {25 e^{4 x}}{x \left (e^{\frac {1}{25} (25+x)^2}-e^{4 x} \log \left (\frac {2}{x}\right )\right )}+\frac {50 e^{4 x} \log \left (\frac {2}{x}\right )}{-e^{\frac {1}{25} (25+x)^2}+e^{4 x} \log \left (\frac {2}{x}\right )}-\frac {2 e^{4 x} x \log \left (\frac {2}{x}\right )}{-e^{\frac {1}{25} (25+x)^2}+e^{4 x} \log \left (\frac {2}{x}\right )}\right ) \, dx-\frac {2}{25} \int \frac {e^{5+2 x} x}{e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)} \, dx-\frac {2}{25} \int \frac {e^{2 x} x \log \left (\frac {2}{x}\right ) \log (x)}{-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)} \, dx+2 \int \frac {e^{5+2 x}}{e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)} \, dx+2 \int \frac {e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)}{-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)} \, dx-\int \frac {e^{5+2 x}}{x \log (x) \left (e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)\right )} \, dx-\int \frac {e^{2 x} \log (x)}{x \left (-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)\right )} \, dx\\ &=\log (\log (x))+\frac {2}{25} \int \frac {e^{4 x} x \log \left (\frac {2}{x}\right )}{-e^{\frac {1}{25} (25+x)^2}+e^{4 x} \log \left (\frac {2}{x}\right )} \, dx-\frac {2}{25} \int \frac {e^{5+2 x} x}{e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)} \, dx-\frac {2}{25} \int \frac {e^{2 x} x \log \left (\frac {2}{x}\right ) \log (x)}{-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)} \, dx-2 \int \frac {e^{4 x} \log \left (\frac {2}{x}\right )}{-e^{\frac {1}{25} (25+x)^2}+e^{4 x} \log \left (\frac {2}{x}\right )} \, dx+2 \int \frac {e^{5+2 x}}{e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)} \, dx+2 \int \frac {e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)}{-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)} \, dx-\int \frac {e^{4 x}}{x \left (e^{\frac {1}{25} (25+x)^2}-e^{4 x} \log \left (\frac {2}{x}\right )\right )} \, dx-\int \frac {e^{5+2 x}}{x \log (x) \left (e^{5+2 x}+e^{25+\frac {x^2}{25}} \log (x)-e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)\right )} \, dx-\int \frac {e^{2 x} \log (x)}{x \left (-e^{5+2 x}-e^{25+\frac {x^2}{25}} \log (x)+e^{2 x} \log \left (\frac {2}{x}\right ) \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.49, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-25 e^5+25 e^{\frac {2}{25} \left (625-50 x+x^2\right )}+e^{5+\frac {1}{25} \left (625-50 x+x^2\right )} \left (50 x-2 x^2\right )-50 e^{\frac {1}{25} \left (625-50 x+x^2\right )} \log \left (\frac {2}{x}\right )+25 \log ^2\left (\frac {2}{x}\right )}{25 e^{5+\frac {1}{25} \left (625-50 x+x^2\right )} x-25 e^5 x \log \left (\frac {2}{x}\right )+\left (25 e^{\frac {2}{25} \left (625-50 x+x^2\right )} x-50 e^{\frac {1}{25} \left (625-50 x+x^2\right )} x \log \left (\frac {2}{x}\right )+25 x \log ^2\left (\frac {2}{x}\right )\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.81, size = 81, normalized size = 2.53 \begin {gather*} \log \left (e^{5} \log \left (\frac {2}{x}\right )^{2} + e^{\left (\frac {1}{25} \, x^{2} - 2 \, x + 30\right )} \log \relax (2) - {\left (e^{5} \log \relax (2) + e^{\left (\frac {1}{25} \, x^{2} - 2 \, x + 30\right )}\right )} \log \left (\frac {2}{x}\right ) + e^{10}\right ) - \log \left (e^{5} \log \left (\frac {2}{x}\right ) - e^{\left (\frac {1}{25} \, x^{2} - 2 \, x + 30\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.77, size = 52, normalized size = 1.62
method | result | size |
risch | \(-\ln \left (\ln \relax (x )+\frac {i \left (2 i \ln \relax (2)-2 i {\mathrm e}^{\frac {\left (x -25\right )^{2}}{25}}\right )}{2}\right )+\ln \left (\ln \relax (x )^{2}+\left ({\mathrm e}^{\frac {\left (x -25\right )^{2}}{25}}-\ln \relax (2)\right ) \ln \relax (x )+{\mathrm e}^{5}\right )\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 77, normalized size = 2.41 \begin {gather*} -\log \left (-{\left ({\left (\log \relax (2) - \log \relax (x)\right )} e^{\left (2 \, x\right )} - e^{\left (\frac {1}{25} \, x^{2} + 25\right )}\right )} e^{\left (-25\right )}\right ) + \log \left (-\frac {{\left ({\left (\log \relax (2) \log \relax (x) - \log \relax (x)^{2} - e^{5}\right )} e^{\left (2 \, x\right )} - e^{\left (\frac {1}{25} \, x^{2} + 25\right )} \log \relax (x)\right )} e^{\left (-25\right )}}{\log \relax (x)}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {25\,{\ln \left (\frac {2}{x}\right )}^2-50\,{\mathrm {e}}^{\frac {x^2}{25}-2\,x+25}\,\ln \left (\frac {2}{x}\right )-25\,{\mathrm {e}}^5+25\,{\mathrm {e}}^{\frac {2\,x^2}{25}-4\,x+50}+{\mathrm {e}}^{\frac {x^2}{25}-2\,x+30}\,\left (50\,x-2\,x^2\right )}{\ln \relax (x)\,\left (25\,x\,{\ln \left (\frac {2}{x}\right )}^2-50\,x\,{\mathrm {e}}^{\frac {x^2}{25}-2\,x+25}\,\ln \left (\frac {2}{x}\right )+25\,x\,{\mathrm {e}}^{\frac {2\,x^2}{25}-4\,x+50}\right )+25\,x\,{\mathrm {e}}^{\frac {x^2}{25}-2\,x+30}-25\,x\,{\mathrm {e}}^5\,\ln \left (\frac {2}{x}\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.11, size = 76, normalized size = 2.38 \begin {gather*} - \log {\left (\frac {2 \log {\relax (x )}^{2} - 2 \log {\relax (2 )} \log {\relax (x )}}{2 \log {\relax (x )}} + e^{\frac {x^{2}}{25} - 2 x + 25} \right )} + \log {\left (\frac {2 \log {\relax (x )}^{2} - 2 \log {\relax (2 )} \log {\relax (x )} + 2 e^{5}}{2 \log {\relax (x )}} + e^{\frac {x^{2}}{25} - 2 x + 25} \right )} + \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________