Optimal. Leaf size=22 \[ x \left (-15-\frac {1}{x}+\frac {4}{e^x-3 \log (\log (4))}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.57, antiderivative size = 129, normalized size of antiderivative = 5.86, number of steps used = 17, number of rules used = 12, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.203, Rules used = {6741, 6742, 2184, 2190, 2279, 2391, 2185, 2191, 2282, 36, 29, 31} \begin {gather*} -\frac {2 x^2}{3 \log (\log (4))}-15 x+\frac {2 (1-x)^2}{3 \log (\log (4))}+\frac {4 (1-x) \log \left (1-\frac {e^x}{3 \log (\log (4))}\right )}{3 \log (\log (4))}+\frac {4 x \log \left (1-\frac {e^x}{3 \log (\log (4))}\right )}{3 \log (\log (4))}-\frac {4 \log \left (e^x-3 \log (\log (4))\right )}{3 \log (\log (4))}+\frac {4 x}{e^x-3 \log (\log (4))}+\frac {4 x}{3 \log (\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 2184
Rule 2185
Rule 2190
Rule 2191
Rule 2279
Rule 2282
Rule 2391
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-15 e^{2 x}+e^x (4-4 x)+\left (-12+90 e^x\right ) \log (\log (4))-135 \log ^2(\log (4))}{\left (e^x-3 \log (\log (4))\right )^2} \, dx\\ &=\int \left (-15-\frac {4 (-1+x)}{e^x-3 \log (\log (4))}-\frac {12 x \log (\log (4))}{\left (e^x-3 \log (\log (4))\right )^2}\right ) \, dx\\ &=-15 x-4 \int \frac {-1+x}{e^x-3 \log (\log (4))} \, dx-(12 \log (\log (4))) \int \frac {x}{\left (e^x-3 \log (\log (4))\right )^2} \, dx\\ &=-15 x+\frac {2 (1-x)^2}{3 \log (\log (4))}-4 \int \frac {e^x x}{\left (e^x-3 \log (\log (4))\right )^2} \, dx+4 \int \frac {x}{e^x-3 \log (\log (4))} \, dx-\frac {4 \int \frac {e^x (-1+x)}{e^x-3 \log (\log (4))} \, dx}{3 \log (\log (4))}\\ &=-15 x+\frac {4 x}{e^x-3 \log (\log (4))}+\frac {2 (1-x)^2}{3 \log (\log (4))}-\frac {2 x^2}{3 \log (\log (4))}+\frac {4 (1-x) \log \left (1-\frac {e^x}{3 \log (\log (4))}\right )}{3 \log (\log (4))}-4 \int \frac {1}{e^x-3 \log (\log (4))} \, dx+\frac {4 \int \frac {e^x x}{e^x-3 \log (\log (4))} \, dx}{3 \log (\log (4))}+\frac {4 \int \log \left (1-\frac {e^x}{3 \log (\log (4))}\right ) \, dx}{3 \log (\log (4))}\\ &=-15 x+\frac {4 x}{e^x-3 \log (\log (4))}+\frac {2 (1-x)^2}{3 \log (\log (4))}-\frac {2 x^2}{3 \log (\log (4))}+\frac {4 (1-x) \log \left (1-\frac {e^x}{3 \log (\log (4))}\right )}{3 \log (\log (4))}+\frac {4 x \log \left (1-\frac {e^x}{3 \log (\log (4))}\right )}{3 \log (\log (4))}-4 \operatorname {Subst}\left (\int \frac {1}{x (x-3 \log (\log (4)))} \, dx,x,e^x\right )-\frac {4 \int \log \left (1-\frac {e^x}{3 \log (\log (4))}\right ) \, dx}{3 \log (\log (4))}+\frac {4 \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{3 \log (\log (4))}\right )}{x} \, dx,x,e^x\right )}{3 \log (\log (4))}\\ &=-15 x+\frac {4 x}{e^x-3 \log (\log (4))}+\frac {2 (1-x)^2}{3 \log (\log (4))}-\frac {2 x^2}{3 \log (\log (4))}+\frac {4 (1-x) \log \left (1-\frac {e^x}{3 \log (\log (4))}\right )}{3 \log (\log (4))}+\frac {4 x \log \left (1-\frac {e^x}{3 \log (\log (4))}\right )}{3 \log (\log (4))}-\frac {4 \text {Li}_2\left (\frac {e^x}{3 \log (\log (4))}\right )}{3 \log (\log (4))}+\frac {4 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )}{3 \log (\log (4))}-\frac {4 \operatorname {Subst}\left (\int \frac {1}{x-3 \log (\log (4))} \, dx,x,e^x\right )}{3 \log (\log (4))}-\frac {4 \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{3 \log (\log (4))}\right )}{x} \, dx,x,e^x\right )}{3 \log (\log (4))}\\ &=-15 x+\frac {4 x}{e^x-3 \log (\log (4))}+\frac {2 (1-x)^2}{3 \log (\log (4))}+\frac {4 x}{3 \log (\log (4))}-\frac {2 x^2}{3 \log (\log (4))}+\frac {4 (1-x) \log \left (1-\frac {e^x}{3 \log (\log (4))}\right )}{3 \log (\log (4))}+\frac {4 x \log \left (1-\frac {e^x}{3 \log (\log (4))}\right )}{3 \log (\log (4))}-\frac {4 \log \left (e^x-3 \log (\log (4))\right )}{3 \log (\log (4))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 18, normalized size = 0.82 \begin {gather*} -15 x+\frac {4 x}{e^x-3 \log (\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 31, normalized size = 1.41 \begin {gather*} -\frac {15 \, x e^{x} - 45 \, x \log \left (2 \, \log \relax (2)\right ) - 4 \, x}{e^{x} - 3 \, \log \left (2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 36, normalized size = 1.64 \begin {gather*} -\frac {15 \, x e^{x} - 45 \, x \log \relax (2) - 45 \, x \log \left (\log \relax (2)\right ) - 4 \, x}{e^{x} - 3 \, \log \relax (2) - 3 \, \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 24, normalized size = 1.09
method | result | size |
risch | \(-15 x -\frac {4 x}{3 \ln \relax (2)+3 \ln \left (\ln \relax (2)\right )-{\mathrm e}^{x}}\) | \(24\) |
norman | \(\frac {\left (-4-45 \ln \left (\ln \relax (2)\right )-45 \ln \relax (2)\right ) x +15 \,{\mathrm e}^{x} x}{3 \ln \left (2 \ln \relax (2)\right )-{\mathrm e}^{x}}\) | \(35\) |
default | \(-\frac {4}{-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}}-\frac {45 \ln \relax (2)}{-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}}-\frac {45 \ln \left (\ln \relax (2)\right )}{-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}}-15 \ln \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )-\frac {4 \ln \relax (2) \ln \left ({\mathrm e}^{x}\right )}{3 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2}}+\frac {12 \ln \relax (2)}{\left (3 \ln \relax (2)+3 \ln \left (\ln \relax (2)\right )\right ) \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )}+\frac {4 \ln \relax (2) \ln \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )}{3 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2}}-\frac {15 \ln \relax (2)^{2} \ln \left ({\mathrm e}^{x}\right )}{\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2}}+\frac {135 \ln \relax (2)^{2}}{\left (3 \ln \relax (2)+3 \ln \left (\ln \relax (2)\right )\right ) \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )}+\frac {15 \ln \relax (2)^{2} \ln \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )}{\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2}}-\frac {4 \ln \left (\ln \relax (2)\right ) \ln \left ({\mathrm e}^{x}\right )}{3 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2}}+\frac {12 \ln \left (\ln \relax (2)\right )}{\left (3 \ln \relax (2)+3 \ln \left (\ln \relax (2)\right )\right ) \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )}+\frac {4 \ln \left (\ln \relax (2)\right ) \ln \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )}{3 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2}}-\frac {15 \ln \left (\ln \relax (2)\right )^{2} \ln \left ({\mathrm e}^{x}\right )}{\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2}}+\frac {135 \ln \left (\ln \relax (2)\right )^{2}}{\left (3 \ln \relax (2)+3 \ln \left (\ln \relax (2)\right )\right ) \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )}+\frac {15 \ln \left (\ln \relax (2)\right )^{2} \ln \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )}{\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2}}-\frac {4 \ln \left (3 \ln \relax (2)+3 \ln \left (\ln \relax (2)\right )-{\mathrm e}^{x}\right )}{3 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )}-\frac {4 x \,{\mathrm e}^{x}}{3 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right ) \left (3 \ln \relax (2)+3 \ln \left (\ln \relax (2)\right )-{\mathrm e}^{x}\right )}-\frac {30 \ln \left (\ln \relax (2)\right ) \ln \relax (2) \ln \left ({\mathrm e}^{x}\right )}{\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2}}+\frac {270 \ln \left (\ln \relax (2)\right ) \ln \relax (2)}{\left (3 \ln \relax (2)+3 \ln \left (\ln \relax (2)\right )\right ) \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )}+\frac {30 \ln \left (\ln \relax (2)\right ) \ln \relax (2) \ln \left (-3 \ln \relax (2)-3 \ln \left (\ln \relax (2)\right )+{\mathrm e}^{x}\right )}{\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2}}\) | \(501\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.97, size = 227, normalized size = 10.32 \begin {gather*} 15 \, {\left (\frac {3}{e^{x} \log \left (2 \, \log \relax (2)\right ) - 3 \, \log \left (2 \, \log \relax (2)\right )^{2}} - \frac {x}{\log \left (2 \, \log \relax (2)\right )^{2}} + \frac {\log \left (e^{x} - 3 \, \log \left (2 \, \log \relax (2)\right )\right )}{\log \left (2 \, \log \relax (2)\right )^{2}}\right )} \log \left (2 \, \log \relax (2)\right )^{2} + \frac {4}{3} \, {\left (\frac {3}{e^{x} \log \left (2 \, \log \relax (2)\right ) - 3 \, \log \left (2 \, \log \relax (2)\right )^{2}} - \frac {x}{\log \left (2 \, \log \relax (2)\right )^{2}} + \frac {\log \left (e^{x} - 3 \, \log \left (2 \, \log \relax (2)\right )\right )}{\log \left (2 \, \log \relax (2)\right )^{2}}\right )} \log \left (2 \, \log \relax (2)\right ) + \frac {4 \, x e^{x}}{3 \, {\left ({\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )} e^{x} - 3 \, \log \relax (2)^{2} - 6 \, \log \relax (2) \log \left (\log \relax (2)\right ) - 3 \, \log \left (\log \relax (2)\right )^{2}\right )}} - \frac {45 \, \log \left (2 \, \log \relax (2)\right )}{e^{x} - 3 \, \log \left (2 \, \log \relax (2)\right )} - \frac {4 \, \log \left (e^{x} - 3 \, \log \relax (2) - 3 \, \log \left (\log \relax (2)\right )\right )}{3 \, {\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )}} - \frac {4}{e^{x} - 3 \, \log \left (2 \, \log \relax (2)\right )} - 15 \, \log \left (e^{x} - 3 \, \log \left (2 \, \log \relax (2)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 29, normalized size = 1.32 \begin {gather*} -\frac {x\,\left (\ln \left ({\ln \relax (4)}^{45}\right )+4\right )-15\,x\,{\mathrm {e}}^x}{\ln \left ({\ln \relax (4)}^3\right )-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.91 \begin {gather*} - 15 x + \frac {4 x}{e^{x} - 3 \log {\relax (2 )} - 3 \log {\left (\log {\relax (2 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________