Optimal. Leaf size=33 \[ e^{(1-x) \left (-e^{\frac {5+x}{8 \left (1-\frac {4}{x^2}-x\right )}}+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 37, normalized size = 1.12 \begin {gather*} e^{e^{-\frac {x^2 (5+x)}{8 \left (4-x^2+x^3\right )}} (-1+x)+x-x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 36, normalized size = 1.09 \begin {gather*} e^{\left (-x^{2} + {\left (x - 1\right )} e^{\left (-\frac {x^{3} + 5 \, x^{2}}{8 \, {\left (x^{3} - x^{2} + 4\right )}}\right )} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.67, size = 84, normalized size = 2.55 \begin {gather*} e^{\left (-x^{2} + x e^{\left (-\frac {x^{3}}{8 \, {\left (x^{3} - x^{2} + 4\right )}} - \frac {5 \, x^{2}}{8 \, {\left (x^{3} - x^{2} + 4\right )}}\right )} + x - e^{\left (-\frac {x^{3}}{8 \, {\left (x^{3} - x^{2} + 4\right )}} - \frac {5 \, x^{2}}{8 \, {\left (x^{3} - x^{2} + 4\right )}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 32, normalized size = 0.97
method | result | size |
risch | \({\mathrm e}^{-\left (x -1\right ) \left (x -{\mathrm e}^{-\frac {x^{2} \left (5+x \right )}{8 \left (x^{3}-x^{2}+4\right )}}\right )}\) | \(32\) |
norman | \(\frac {x^{3} {\mathrm e}^{\left (x -1\right ) {\mathrm e}^{\frac {-x^{3}-5 x^{2}}{8 x^{3}-8 x^{2}+32}}-x^{2}+x}-x^{2} {\mathrm e}^{\left (x -1\right ) {\mathrm e}^{\frac {-x^{3}-5 x^{2}}{8 x^{3}-8 x^{2}+32}}-x^{2}+x}+4 \,{\mathrm e}^{\left (x -1\right ) {\mathrm e}^{\frac {-x^{3}-5 x^{2}}{8 x^{3}-8 x^{2}+32}}-x^{2}+x}}{x^{3}-x^{2}+4}\) | \(143\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{4} \, \int \frac {{\left (8 \, x^{7} - 20 \, x^{6} + 16 \, x^{5} + 60 \, x^{4} - 96 \, x^{3} + 32 \, x^{2} - {\left (4 \, x^{6} - 5 \, x^{5} + x^{4} + 26 \, x^{3} - 46 \, x^{2} + 20 \, x + 64\right )} e^{\left (-\frac {x^{3} + 5 \, x^{2}}{8 \, {\left (x^{3} - x^{2} + 4\right )}}\right )} + 128 \, x - 64\right )} e^{\left (-x^{2} + {\left (x - 1\right )} e^{\left (-\frac {x^{3} + 5 \, x^{2}}{8 \, {\left (x^{3} - x^{2} + 4\right )}}\right )} + x\right )}}{x^{6} - 2 \, x^{5} + x^{4} + 8 \, x^{3} - 8 \, x^{2} + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.69, size = 95, normalized size = 2.88 \begin {gather*} {\mathrm {e}}^{-{\mathrm {e}}^{-\frac {x^3}{8\,x^3-8\,x^2+32}}\,{\mathrm {e}}^{-\frac {5\,x^2}{8\,x^3-8\,x^2+32}}}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-\frac {x^3}{8\,x^3-8\,x^2+32}}\,{\mathrm {e}}^{-\frac {5\,x^2}{8\,x^3-8\,x^2+32}}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.47, size = 32, normalized size = 0.97 \begin {gather*} e^{- x^{2} + x + \left (x - 1\right ) e^{\frac {- x^{3} - 5 x^{2}}{8 x^{3} - 8 x^{2} + 32}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________