Optimal. Leaf size=17 \[ \log \left (\frac {33 x}{\log \left (5 \left (2+e^{5/4}+x\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {6, 1593, 6688, 2390, 12, 2302, 29} \begin {gather*} \log (x)-\log \left (\log \left (5 \left (x+e^{5/4}+2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 29
Rule 1593
Rule 2302
Rule 2390
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x+\left (2+e^{5/4}+x\right ) \log \left (10+5 e^{5/4}+5 x\right )}{\left (\left (2+e^{5/4}\right ) x+x^2\right ) \log \left (10+5 e^{5/4}+5 x\right )} \, dx\\ &=\int \frac {-x+\left (2+e^{5/4}+x\right ) \log \left (10+5 e^{5/4}+5 x\right )}{x \left (2+e^{5/4}+x\right ) \log \left (10+5 e^{5/4}+5 x\right )} \, dx\\ &=\int \left (\frac {1}{x}-\frac {1}{\left (2+e^{5/4}+x\right ) \log \left (5 \left (2+e^{5/4}\right )+5 x\right )}\right ) \, dx\\ &=\log (x)-\int \frac {1}{\left (2+e^{5/4}+x\right ) \log \left (5 \left (2+e^{5/4}\right )+5 x\right )} \, dx\\ &=\log (x)-\frac {1}{5} \operatorname {Subst}\left (\int \frac {5}{x \log (x)} \, dx,x,5 \left (2+e^{5/4}\right )+5 x\right )\\ &=\log (x)-\operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,5 \left (2+e^{5/4}\right )+5 x\right )\\ &=\log (x)-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 \left (2+e^{5/4}+x\right )\right )\right )\\ &=\log (x)-\log \left (\log \left (5 \left (2+e^{5/4}+x\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 17, normalized size = 1.00 \begin {gather*} \log (x)-\log \left (\log \left (5 \left (2+e^{5/4}+x\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 16, normalized size = 0.94 \begin {gather*} \log \relax (x) - \log \left (\log \left (5 \, x + 5 \, e^{\frac {5}{4}} + 10\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 16, normalized size = 0.94 \begin {gather*} \log \relax (x) - \log \left (\log \left (5 \, x + 5 \, e^{\frac {5}{4}} + 10\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.50, size = 17, normalized size = 1.00
method | result | size |
norman | \(-\ln \left (\ln \left (5 \,{\mathrm e}^{\frac {5}{4}}+5 x +10\right )\right )+\ln \relax (x )\) | \(17\) |
risch | \(-\ln \left (\ln \left (5 \,{\mathrm e}^{\frac {5}{4}}+5 x +10\right )\right )+\ln \relax (x )\) | \(17\) |
derivativedivides | \(\ln \left (-5 x \right )-\ln \left (\ln \left (5 \,{\mathrm e}^{\frac {5}{4}}+5 x +10\right )\right )\) | \(19\) |
default | \(\ln \left (-5 x \right )-\ln \left (\ln \left (5 \,{\mathrm e}^{\frac {5}{4}}+5 x +10\right )\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.89, size = 113, normalized size = 6.65 \begin {gather*} -{\left (\frac {\log \left (x + e^{\frac {5}{4}} + 2\right )}{e^{\frac {5}{4}} + 2} - \frac {\log \relax (x)}{e^{\frac {5}{4}} + 2}\right )} e^{\frac {5}{4}} - {\left (\log \relax (5) + \log \left (x + e^{\frac {5}{4}} + 2\right )\right )} \log \left (\log \relax (5) + \log \left (x + e^{\frac {5}{4}} + 2\right )\right ) + \log \left (5 \, x + 5 \, e^{\frac {5}{4}} + 10\right ) \log \left (\log \relax (5) + \log \left (x + e^{\frac {5}{4}} + 2\right )\right ) - \frac {2 \, \log \left (x + e^{\frac {5}{4}} + 2\right )}{e^{\frac {5}{4}} + 2} + \frac {2 \, \log \relax (x)}{e^{\frac {5}{4}} + 2} + \log \left (x + e^{\frac {5}{4}} + 2\right ) - \log \left (\log \relax (5) + \log \left (x + e^{\frac {5}{4}} + 2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.49, size = 16, normalized size = 0.94 \begin {gather*} \ln \relax (x)-\ln \left (\ln \left (5\,x+5\,{\mathrm {e}}^{5/4}+10\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 1.00 \begin {gather*} \log {\relax (x )} - \log {\left (\log {\left (5 x + 10 + 5 e^{\frac {5}{4}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________