Optimal. Leaf size=23 \[ e^{-5+\frac {60}{x \log \left (\frac {e}{(2+\log (5))^2}\right )}} \log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.09, antiderivative size = 103, normalized size of antiderivative = 4.48, number of steps used = 2, number of rules used = 2, integrand size = 86, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {12, 2288} \begin {gather*} \frac {12 (2+\log (5))^{\frac {10}{\log \left (\frac {e}{(2+\log (5))^2}\right )}} \log (x) \exp \left (\frac {60}{x \log \left (\frac {e}{(2+\log (5))^2}\right )}-\frac {5}{\log \left (\frac {e}{(2+\log (5))^2}\right )}\right )}{x^2 \log \left (\frac {e}{(2+\log (5))^2}\right ) \left (\frac {12-x \log \left (\frac {e}{(2+\log (5))^2}\right )}{x^2 \log \left (\frac {e}{(2+\log (5))^2}\right )}+\frac {1}{x}\right )} \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\exp \left (\frac {60-5 x \log \left (\frac {e}{4+4 \log (5)+\log ^2(5)}\right )}{x \log \left (\frac {e}{4+4 \log (5)+\log ^2(5)}\right )}\right ) \left (-60 \log (x)+x \log \left (\frac {e}{4+4 \log (5)+\log ^2(5)}\right )\right )}{x^2} \, dx}{\log \left (\frac {e}{(2+\log (5))^2}\right )}\\ &=\frac {12 \exp \left (-\frac {5}{\log \left (\frac {e}{(2+\log (5))^2}\right )}+\frac {60}{x \log \left (\frac {e}{(2+\log (5))^2}\right )}\right ) (2+\log (5))^{\frac {10}{\log \left (\frac {e}{(2+\log (5))^2}\right )}} \log (x)}{x^2 \log \left (\frac {e}{(2+\log (5))^2}\right ) \left (\frac {1}{x}+\frac {12-x \log \left (\frac {e}{(2+\log (5))^2}\right )}{x^2 \log \left (\frac {e}{(2+\log (5))^2}\right )}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 23, normalized size = 1.00 \begin {gather*} e^{-5+\frac {60}{x \log \left (\frac {e}{(2+\log (5))^2}\right )}} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 47, normalized size = 2.04 \begin {gather*} e^{\left (-\frac {5 \, {\left (x \log \left (\frac {e}{\log \relax (5)^{2} + 4 \, \log \relax (5) + 4}\right ) - 12\right )}}{x \log \left (\frac {e}{\log \relax (5)^{2} + 4 \, \log \relax (5) + 4}\right )}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x \log \left (\frac {e}{\log \relax (5)^{2} + 4 \, \log \relax (5) + 4}\right ) - 60 \, \log \relax (x)\right )} e^{\left (-\frac {5 \, {\left (x \log \left (\frac {e}{\log \relax (5)^{2} + 4 \, \log \relax (5) + 4}\right ) - 12\right )}}{x \log \left (\frac {e}{\log \relax (5)^{2} + 4 \, \log \relax (5) + 4}\right )}\right )}}{x^{2} \log \left (\frac {e}{\log \relax (5)^{2} + 4 \, \log \relax (5) + 4}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.13, size = 48, normalized size = 2.09
method | result | size |
default | \({\mathrm e}^{\frac {-5 x \ln \left (\frac {{\mathrm e}}{\ln \relax (5)^{2}+4 \ln \relax (5)+4}\right )+60}{x \ln \left (\frac {{\mathrm e}}{\ln \relax (5)^{2}+4 \ln \relax (5)+4}\right )}} \ln \relax (x )\) | \(48\) |
norman | \({\mathrm e}^{\frac {-5 x \ln \left (\frac {{\mathrm e}}{\ln \relax (5)^{2}+4 \ln \relax (5)+4}\right )+60}{x \ln \left (\frac {{\mathrm e}}{\ln \relax (5)^{2}+4 \ln \relax (5)+4}\right )}} \ln \relax (x )\) | \(48\) |
risch | \(-\frac {\left (2 \ln \left (2+\ln \relax (5)\right )-1\right ) {\mathrm e}^{-\frac {5 \left (2 x \ln \left (2+\ln \relax (5)\right )-x +12\right )}{x \left (2 \ln \left (2+\ln \relax (5)\right )-1\right )}} \ln \relax (x )}{-2 \ln \left (2+\ln \relax (5)\right )+1}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.81, size = 29, normalized size = 1.26 \begin {gather*} e^{\left (\frac {60}{x \log \left (\frac {e}{\log \relax (5)^{2} + 4 \, \log \relax (5) + 4}\right )} - 5\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.28, size = 72, normalized size = 3.13 \begin {gather*} \frac {{\mathrm {e}}^{\frac {60}{x-x\,\ln \left (4\,\ln \relax (5)+{\ln \relax (5)}^2+4\right )}}\,{\mathrm {e}}^{\frac {5}{\ln \left (4\,\ln \relax (5)+{\ln \relax (5)}^2+4\right )-1}}\,\ln \relax (x)}{{\left (4\,\ln \relax (5)+{\ln \relax (5)}^2+4\right )}^{\frac {5}{\ln \left (4\,\ln \relax (5)+{\ln \relax (5)}^2+4\right )-1}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.53, size = 44, normalized size = 1.91 \begin {gather*} e^{\frac {- 5 x \log {\left (\frac {e}{\log {\relax (5 )}^{2} + 4 + 4 \log {\relax (5 )}} \right )} + 60}{x \log {\left (\frac {e}{\log {\relax (5 )}^{2} + 4 + 4 \log {\relax (5 )}} \right )}}} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________