Optimal. Leaf size=28 \[ -8-x+\frac {4 \log \left (x-x^2 \log ((-4+x) x)\right )}{3 (20+x)} \]
________________________________________________________________________________________
Rubi [F] time = 5.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {320-5184 x+860 x^2+116 x^3+3 x^4+\left (-640 x+4928 x^2-712 x^3-108 x^4-3 x^5\right ) \log \left (-4 x+x^2\right )+\left (-16 x+4 x^2+\left (16 x^2-4 x^3\right ) \log \left (-4 x+x^2\right )\right ) \log \left (x-x^2 \log \left (-4 x+x^2\right )\right )}{4800 x-720 x^2-108 x^3-3 x^4+\left (-4800 x^2+720 x^3+108 x^4+3 x^5\right ) \log \left (-4 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {320-5184 x+860 x^2+116 x^3+3 x^4+\left (-640 x+4928 x^2-712 x^3-108 x^4-3 x^5\right ) \log \left (-4 x+x^2\right )+\left (-16 x+4 x^2+\left (16 x^2-4 x^3\right ) \log \left (-4 x+x^2\right )\right ) \log \left (x-x^2 \log \left (-4 x+x^2\right )\right )}{3 (4-x) x (20+x)^2 (1-x \log ((-4+x) x))} \, dx\\ &=\frac {1}{3} \int \frac {320-5184 x+860 x^2+116 x^3+3 x^4+\left (-640 x+4928 x^2-712 x^3-108 x^4-3 x^5\right ) \log \left (-4 x+x^2\right )+\left (-16 x+4 x^2+\left (16 x^2-4 x^3\right ) \log \left (-4 x+x^2\right )\right ) \log \left (x-x^2 \log \left (-4 x+x^2\right )\right )}{(4-x) x (20+x)^2 (1-x \log ((-4+x) x))} \, dx\\ &=\frac {1}{3} \int \left (-\frac {5184}{(-4+x) (20+x)^2 (-1+x \log ((-4+x) x))}+\frac {320}{(-4+x) x (20+x)^2 (-1+x \log ((-4+x) x))}+\frac {860 x}{(-4+x) (20+x)^2 (-1+x \log ((-4+x) x))}+\frac {116 x^2}{(-4+x) (20+x)^2 (-1+x \log ((-4+x) x))}+\frac {3 x^3}{(-4+x) (20+x)^2 (-1+x \log ((-4+x) x))}-\frac {\left (-8+60 x+3 x^2\right ) \log ((-4+x) x)}{(20+x) (-1+x \log ((-4+x) x))}-\frac {4 \log \left (x-x^2 \log ((-4+x) x)\right )}{(20+x)^2}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {\left (-8+60 x+3 x^2\right ) \log ((-4+x) x)}{(20+x) (-1+x \log ((-4+x) x))} \, dx\right )-\frac {4}{3} \int \frac {\log \left (x-x^2 \log ((-4+x) x)\right )}{(20+x)^2} \, dx+\frac {116}{3} \int \frac {x^2}{(-4+x) (20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\frac {320}{3} \int \frac {1}{(-4+x) x (20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\frac {860}{3} \int \frac {x}{(-4+x) (20+x)^2 (-1+x \log ((-4+x) x))} \, dx-1728 \int \frac {1}{(-4+x) (20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\int \frac {x^3}{(-4+x) (20+x)^2 (-1+x \log ((-4+x) x))} \, dx\\ &=-\left (\frac {1}{3} \int \left (\frac {-8+60 x+3 x^2}{x (20+x)}+\frac {-8+60 x+3 x^2}{x (20+x) (-1+x \log ((-4+x) x))}\right ) \, dx\right )-\frac {4}{3} \int \frac {\log \left (x-x^2 \log ((-4+x) x)\right )}{(20+x)^2} \, dx+\frac {116}{3} \int \left (\frac {1}{36 (-4+x) (-1+x \log ((-4+x) x))}-\frac {50}{3 (20+x)^2 (-1+x \log ((-4+x) x))}+\frac {35}{36 (20+x) (-1+x \log ((-4+x) x))}\right ) \, dx+\frac {320}{3} \int \left (\frac {1}{2304 (-4+x) (-1+x \log ((-4+x) x))}-\frac {1}{1600 x (-1+x \log ((-4+x) x))}+\frac {1}{480 (20+x)^2 (-1+x \log ((-4+x) x))}+\frac {11}{57600 (20+x) (-1+x \log ((-4+x) x))}\right ) \, dx+\frac {860}{3} \int \left (\frac {1}{144 (-4+x) (-1+x \log ((-4+x) x))}+\frac {5}{6 (20+x)^2 (-1+x \log ((-4+x) x))}-\frac {1}{144 (20+x) (-1+x \log ((-4+x) x))}\right ) \, dx-1728 \int \left (\frac {1}{576 (-4+x) (-1+x \log ((-4+x) x))}-\frac {1}{24 (20+x)^2 (-1+x \log ((-4+x) x))}-\frac {1}{576 (20+x) (-1+x \log ((-4+x) x))}\right ) \, dx+\int \left (\frac {1}{-1+x \log ((-4+x) x)}+\frac {1}{9 (-4+x) (-1+x \log ((-4+x) x))}+\frac {1000}{3 (20+x)^2 (-1+x \log ((-4+x) x))}-\frac {325}{9 (20+x) (-1+x \log ((-4+x) x))}\right ) \, dx\\ &=\frac {11}{540} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx+\frac {5}{108} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx-\frac {1}{15} \int \frac {1}{x (-1+x \log ((-4+x) x))} \, dx+\frac {1}{9} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx+\frac {2}{9} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx-\frac {1}{3} \int \frac {-8+60 x+3 x^2}{x (20+x)} \, dx-\frac {1}{3} \int \frac {-8+60 x+3 x^2}{x (20+x) (-1+x \log ((-4+x) x))} \, dx+\frac {29}{27} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx-\frac {4}{3} \int \frac {\log \left (x-x^2 \log ((-4+x) x)\right )}{(20+x)^2} \, dx+\frac {215}{108} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx-\frac {215}{108} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx-3 \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx+3 \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx-\frac {325}{9} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx+\frac {1015}{27} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx+72 \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\frac {2150}{9} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\frac {1000}{3} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx-\frac {5800}{9} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\int \frac {1}{-1+x \log ((-4+x) x)} \, dx\\ &=\frac {11}{540} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx+\frac {5}{108} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx-\frac {1}{15} \int \frac {1}{x (-1+x \log ((-4+x) x))} \, dx+\frac {1}{9} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx+\frac {2}{9} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx-\frac {1}{3} \int \left (3-\frac {2}{5 x}+\frac {2}{5 (20+x)}\right ) \, dx-\frac {1}{3} \int \left (\frac {3}{-1+x \log ((-4+x) x)}-\frac {2}{5 x (-1+x \log ((-4+x) x))}+\frac {2}{5 (20+x) (-1+x \log ((-4+x) x))}\right ) \, dx+\frac {29}{27} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx-\frac {4}{3} \int \frac {\log \left (x-x^2 \log ((-4+x) x)\right )}{(20+x)^2} \, dx+\frac {215}{108} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx-\frac {215}{108} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx-3 \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx+3 \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx-\frac {325}{9} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx+\frac {1015}{27} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx+72 \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\frac {2150}{9} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\frac {1000}{3} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx-\frac {5800}{9} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\int \frac {1}{-1+x \log ((-4+x) x)} \, dx\\ &=-x+\frac {2 \log (x)}{15}-\frac {2}{15} \log (20+x)+\frac {11}{540} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx+\frac {5}{108} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx-\frac {1}{15} \int \frac {1}{x (-1+x \log ((-4+x) x))} \, dx+\frac {1}{9} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx+\frac {2}{15} \int \frac {1}{x (-1+x \log ((-4+x) x))} \, dx-\frac {2}{15} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx+\frac {2}{9} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\frac {29}{27} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx-\frac {4}{3} \int \frac {\log \left (x-x^2 \log ((-4+x) x)\right )}{(20+x)^2} \, dx+\frac {215}{108} \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx-\frac {215}{108} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx-3 \int \frac {1}{(-4+x) (-1+x \log ((-4+x) x))} \, dx+3 \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx-\frac {325}{9} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx+\frac {1015}{27} \int \frac {1}{(20+x) (-1+x \log ((-4+x) x))} \, dx+72 \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\frac {2150}{9} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx+\frac {1000}{3} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx-\frac {5800}{9} \int \frac {1}{(20+x)^2 (-1+x \log ((-4+x) x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 29, normalized size = 1.04 \begin {gather*} \frac {1}{3} \left (-3 x+\frac {4 \log \left (x-x^2 \log ((-4+x) x)\right )}{20+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 34, normalized size = 1.21 \begin {gather*} -\frac {3 \, x^{2} + 60 \, x - 4 \, \log \left (-x^{2} \log \left (x^{2} - 4 \, x\right ) + x\right )}{3 \, {\left (x + 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 34, normalized size = 1.21 \begin {gather*} -x + \frac {4 \, \log \left (-x \log \left (x^{2} - 4 \, x\right ) + 1\right )}{3 \, {\left (x + 20\right )}} + \frac {4 \, \log \relax (x)}{3 \, {\left (x + 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-4 x^{3}+16 x^{2}\right ) \ln \left (x^{2}-4 x \right )+4 x^{2}-16 x \right ) \ln \left (-x^{2} \ln \left (x^{2}-4 x \right )+x \right )+\left (-3 x^{5}-108 x^{4}-712 x^{3}+4928 x^{2}-640 x \right ) \ln \left (x^{2}-4 x \right )+3 x^{4}+116 x^{3}+860 x^{2}-5184 x +320}{\left (3 x^{5}+108 x^{4}+720 x^{3}-4800 x^{2}\right ) \ln \left (x^{2}-4 x \right )-3 x^{4}-108 x^{3}-720 x^{2}+4800 x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 37, normalized size = 1.32 \begin {gather*} -\frac {3 \, x^{2} + 60 \, x - 4 \, \log \left (-x \log \left (x - 4\right ) - x \log \relax (x) + 1\right ) - 4 \, \log \relax (x)}{3 \, {\left (x + 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.21, size = 29, normalized size = 1.04 \begin {gather*} \frac {4\,\ln \left (x-x^2\,\ln \left (x^2-4\,x\right )\right )}{3\,\left (x+20\right )}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 22, normalized size = 0.79 \begin {gather*} - x + \frac {4 \log {\left (- x^{2} \log {\left (x^{2} - 4 x \right )} + x \right )}}{3 x + 60} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________