Optimal. Leaf size=25 \[ \log \left (\frac {9 \left (-e^{\frac {1}{2} (-6+x)-x}+x\right )^2}{x^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1}{2} (-6-x)} (-2-x)}{e^{\frac {1}{2} (-6-x)} x-x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2-x}{x \left (1-e^{3+\frac {x}{2}} x\right )} \, dx\\ &=\int \left (\frac {1}{-1+e^{3+\frac {x}{2}} x}+\frac {2}{x \left (-1+e^{3+\frac {x}{2}} x\right )}\right ) \, dx\\ &=2 \int \frac {1}{x \left (-1+e^{3+\frac {x}{2}} x\right )} \, dx+\int \frac {1}{-1+e^{3+\frac {x}{2}} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 25, normalized size = 1.00 \begin {gather*} -x-2 \log (x)+2 \log \left (1-e^{3+\frac {x}{2}} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 18, normalized size = 0.72 \begin {gather*} -2 \, \log \relax (x) + 2 \, \log \left (-x + e^{\left (-\frac {1}{2} \, x - 3\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 18, normalized size = 0.72 \begin {gather*} 2 \, \log \left (-x e^{3} + e^{\left (-\frac {1}{2} \, x\right )}\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 19, normalized size = 0.76
method | result | size |
norman | \(-2 \ln \relax (x )+2 \ln \left (x -{\mathrm e}^{-\frac {x}{2}-3}\right )\) | \(19\) |
risch | \(-2 \ln \relax (x )+6+2 \ln \left ({\mathrm e}^{-\frac {x}{2}-3}-x \right )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 23, normalized size = 0.92 \begin {gather*} -x + 2 \, \log \left (\frac {{\left (x e^{\left (\frac {1}{2} \, x + 3\right )} - 1\right )} e^{\left (-3\right )}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 18, normalized size = 0.72 \begin {gather*} 2\,\ln \left (x-\frac {{\mathrm {e}}^{-3}}{\sqrt {{\mathrm {e}}^x}}\right )-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.68 \begin {gather*} - 2 \log {\relax (x )} + 2 \log {\left (- x + e^{- \frac {x}{2} - 3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________