Optimal. Leaf size=22 \[ 4-20736 e^{2 e^{-3+x}} \left (x+\frac {x}{e^3}\right )^4 \]
________________________________________________________________________________________
Rubi [B] time = 0.04, antiderivative size = 48, normalized size of antiderivative = 2.18, number of steps used = 5, number of rules used = 2, integrand size = 95, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6, 2288} \begin {gather*} -20736 e^{2 e^{x-3}-12} \left (e^{12} x^4+4 e^9 x^4+6 e^6 x^4+4 e^3 x^4+x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-15+2 e^{-3+x}} \left (-497664 e^9 x^3-331776 e^{12} x^3-82944 e^{15} x^3+\left (-82944 e^3-331776 e^6\right ) x^3+e^x \left (-41472 x^4-165888 e^3 x^4-248832 e^6 x^4-165888 e^9 x^4-41472 e^{12} x^4\right )\right ) \, dx\\ &=\int e^{-15+2 e^{-3+x}} \left (-82944 e^{15} x^3+\left (-82944 e^3-331776 e^6\right ) x^3+\left (-497664 e^9-331776 e^{12}\right ) x^3+e^x \left (-41472 x^4-165888 e^3 x^4-248832 e^6 x^4-165888 e^9 x^4-41472 e^{12} x^4\right )\right ) \, dx\\ &=\int e^{-15+2 e^{-3+x}} \left (\left (-497664 e^9-331776 e^{12}\right ) x^3+\left (-82944 e^3-331776 e^6-82944 e^{15}\right ) x^3+e^x \left (-41472 x^4-165888 e^3 x^4-248832 e^6 x^4-165888 e^9 x^4-41472 e^{12} x^4\right )\right ) \, dx\\ &=\int e^{-15+2 e^{-3+x}} \left (\left (-82944 e^3-331776 e^6-497664 e^9-331776 e^{12}-82944 e^{15}\right ) x^3+e^x \left (-41472 x^4-165888 e^3 x^4-248832 e^6 x^4-165888 e^9 x^4-41472 e^{12} x^4\right )\right ) \, dx\\ &=-20736 e^{-12+2 e^{-3+x}} \left (x^4+4 e^3 x^4+6 e^6 x^4+4 e^9 x^4+e^{12} x^4\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 1.05 \begin {gather*} -20736 e^{-12+2 e^{-3+x}} \left (1+e^3\right )^4 x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.47, size = 50, normalized size = 2.27 \begin {gather*} -20736 \, {\left (x^{4} e^{15} + 4 \, x^{4} e^{12} + 6 \, x^{4} e^{9} + 4 \, x^{4} e^{6} + x^{4} e^{3}\right )} e^{\left (-{\left (15 \, e^{3} - 2 \, e^{x}\right )} e^{\left (-3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 71, normalized size = 3.23 \begin {gather*} -20736 \, {\left (x^{4} e^{\left (2 \, e^{\left (x - 3\right )}\right )} + x^{4} e^{\left (2 \, e^{\left (x - 3\right )} + 12\right )} + 4 \, x^{4} e^{\left (2 \, e^{\left (x - 3\right )} + 9\right )} + 6 \, x^{4} e^{\left (2 \, e^{\left (x - 3\right )} + 6\right )} + 4 \, x^{4} e^{\left (2 \, e^{\left (x - 3\right )} + 3\right )}\right )} e^{\left (-12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 31, normalized size = 1.41
method | result | size |
risch | \(-20736 \left ({\mathrm e}^{12}+4 \,{\mathrm e}^{9}+6 \,{\mathrm e}^{6}+4 \,{\mathrm e}^{3}+1\right ) x^{4} {\mathrm e}^{-12+2 \,{\mathrm e}^{x -3}}\) | \(31\) |
norman | \(\left (-20736 \,{\mathrm e}^{12}-82944 \,{\mathrm e}^{9}-124416 \,{\mathrm e}^{6}-82944 \,{\mathrm e}^{3}-20736\right ) x^{4} {\mathrm e}^{2 \,{\mathrm e}^{x -3}} {\mathrm e}^{-12}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 30, normalized size = 1.36 \begin {gather*} -20736 \, x^{4} {\left (e^{12} + 4 \, e^{9} + 6 \, e^{6} + 4 \, e^{3} + 1\right )} e^{\left (2 \, e^{\left (x - 3\right )} - 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.97, size = 30, normalized size = 1.36 \begin {gather*} -20736\,x^4\,{\mathrm {e}}^{2\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-12}\,\left (4\,{\mathrm {e}}^3+6\,{\mathrm {e}}^6+4\,{\mathrm {e}}^9+{\mathrm {e}}^{12}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 53, normalized size = 2.41 \begin {gather*} \frac {\left (- 20736 x^{4} e^{12} - 82944 x^{4} e^{9} - 124416 x^{4} e^{6} - 82944 x^{4} e^{3} - 20736 x^{4}\right ) e^{\frac {2 e^{x}}{e^{3}}}}{e^{12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________