Optimal. Leaf size=30 \[ \frac {x-\frac {x^2}{\left (4+e^x\right )^2}}{1+\left (\frac {2}{x}-2 x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 8.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {768 x^2-64 x^3-448 x^4+56 x^5-256 x^6+e^{2 x} \left (144 x^2-84 x^4-48 x^6\right )+e^{3 x} \left (12 x^2-7 x^4-4 x^6\right )+e^x \left (576 x^2-16 x^3-328 x^4+14 x^5-206 x^6+8 x^8\right )}{1024-3584 x^2+5184 x^4-3584 x^6+1024 x^8+e^{3 x} \left (16-56 x^2+81 x^4-56 x^6+16 x^8\right )+e^{2 x} \left (192-672 x^2+972 x^4-672 x^6+192 x^8\right )+e^x \left (768-2688 x^2+3888 x^4-2688 x^6+768 x^8\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (-12 e^{2 x} \left (-12+7 x^2+4 x^4\right )-e^{3 x} \left (-12+7 x^2+4 x^4\right )-8 \left (-96+8 x+56 x^2-7 x^3+32 x^4\right )+2 e^x \left (288-8 x-164 x^2+7 x^3-103 x^4+4 x^6\right )\right )}{\left (4+e^x\right )^3 \left (4-7 x^2+4 x^4\right )^2} \, dx\\ &=\int \left (-\frac {8 x^4}{\left (4+e^x\right )^3 \left (4-7 x^2+4 x^4\right )}-\frac {x^2 \left (-12+7 x^2+4 x^4\right )}{\left (4-7 x^2+4 x^4\right )^2}+\frac {2 x^3 \left (-8+4 x+7 x^2-7 x^3+4 x^5\right )}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2}\right ) \, dx\\ &=2 \int \frac {x^3 \left (-8+4 x+7 x^2-7 x^3+4 x^5\right )}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2} \, dx-8 \int \frac {x^4}{\left (4+e^x\right )^3 \left (4-7 x^2+4 x^4\right )} \, dx-\int \frac {x^2 \left (-12+7 x^2+4 x^4\right )}{\left (4-7 x^2+4 x^4\right )^2} \, dx\\ &=\frac {x^3}{4-7 x^2+4 x^4}+2 \int \left (\frac {1}{4 \left (4+e^x\right )^2}+\frac {x \left (-28+17 x^2\right )}{4 \left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2}+\frac {-4+7 x+7 x^2}{4 \left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )}\right ) \, dx-8 \int \left (\frac {1}{4 \left (4+e^x\right )^3}+\frac {-4+7 x^2}{4 \left (4+e^x\right )^3 \left (4-7 x^2+4 x^4\right )}\right ) \, dx\\ &=\frac {x^3}{4-7 x^2+4 x^4}+\frac {1}{2} \int \frac {1}{\left (4+e^x\right )^2} \, dx+\frac {1}{2} \int \frac {x \left (-28+17 x^2\right )}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2} \, dx+\frac {1}{2} \int \frac {-4+7 x+7 x^2}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )} \, dx-2 \int \frac {1}{\left (4+e^x\right )^3} \, dx-2 \int \frac {-4+7 x^2}{\left (4+e^x\right )^3 \left (4-7 x^2+4 x^4\right )} \, dx\\ &=\frac {x^3}{4-7 x^2+4 x^4}+\frac {1}{2} \int \left (-\frac {28 x}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2}+\frac {17 x^3}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2}\right ) \, dx+\frac {1}{2} \int \left (-\frac {4}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )}+\frac {7 x}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )}+\frac {7 x^2}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )}\right ) \, dx+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x (4+x)^2} \, dx,x,e^x\right )-2 \int \left (-\frac {4}{\left (4+e^x\right )^3 \left (4-7 x^2+4 x^4\right )}+\frac {7 x^2}{\left (4+e^x\right )^3 \left (4-7 x^2+4 x^4\right )}\right ) \, dx-2 \operatorname {Subst}\left (\int \frac {1}{x (4+x)^3} \, dx,x,e^x\right )\\ &=\frac {x^3}{4-7 x^2+4 x^4}+\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {1}{16 x}-\frac {1}{4 (4+x)^2}-\frac {1}{16 (4+x)}\right ) \, dx,x,e^x\right )-2 \int \frac {1}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )} \, dx-2 \operatorname {Subst}\left (\int \left (\frac {1}{64 x}-\frac {1}{4 (4+x)^3}-\frac {1}{16 (4+x)^2}-\frac {1}{64 (4+x)}\right ) \, dx,x,e^x\right )+\frac {7}{2} \int \frac {x}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )} \, dx+\frac {7}{2} \int \frac {x^2}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )} \, dx+8 \int \frac {1}{\left (4+e^x\right )^3 \left (4-7 x^2+4 x^4\right )} \, dx+\frac {17}{2} \int \frac {x^3}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2} \, dx-14 \int \frac {x}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2} \, dx-14 \int \frac {x^2}{\left (4+e^x\right )^3 \left (4-7 x^2+4 x^4\right )} \, dx\\ &=-\frac {1}{4 \left (4+e^x\right )^2}+\frac {x^3}{4-7 x^2+4 x^4}-2 \int \left (\frac {8 i}{\sqrt {15} \left (4+e^x\right )^2 \left (7+i \sqrt {15}-8 x^2\right )}+\frac {8 i}{\sqrt {15} \left (4+e^x\right )^2 \left (-7+i \sqrt {15}+8 x^2\right )}\right ) \, dx+\frac {7}{2} \int \left (\frac {1-\frac {7 i}{\sqrt {15}}}{\left (4+e^x\right )^2 \left (-7-i \sqrt {15}+8 x^2\right )}+\frac {1+\frac {7 i}{\sqrt {15}}}{\left (4+e^x\right )^2 \left (-7+i \sqrt {15}+8 x^2\right )}\right ) \, dx+\frac {7}{2} \int \left (\frac {8 i x}{\sqrt {15} \left (4+e^x\right )^2 \left (7+i \sqrt {15}-8 x^2\right )}+\frac {8 i x}{\sqrt {15} \left (4+e^x\right )^2 \left (-7+i \sqrt {15}+8 x^2\right )}\right ) \, dx+8 \int \left (\frac {8 i}{\sqrt {15} \left (4+e^x\right )^3 \left (7+i \sqrt {15}-8 x^2\right )}+\frac {8 i}{\sqrt {15} \left (4+e^x\right )^3 \left (-7+i \sqrt {15}+8 x^2\right )}\right ) \, dx+\frac {17}{2} \int \frac {x^3}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2} \, dx-14 \int \frac {x}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2} \, dx-14 \int \left (\frac {1-\frac {7 i}{\sqrt {15}}}{\left (4+e^x\right )^3 \left (-7-i \sqrt {15}+8 x^2\right )}+\frac {1+\frac {7 i}{\sqrt {15}}}{\left (4+e^x\right )^3 \left (-7+i \sqrt {15}+8 x^2\right )}\right ) \, dx\\ &=-\frac {1}{4 \left (4+e^x\right )^2}+\frac {x^3}{4-7 x^2+4 x^4}+\frac {17}{2} \int \frac {x^3}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2} \, dx-14 \int \frac {x}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )^2} \, dx-\frac {(16 i) \int \frac {1}{\left (4+e^x\right )^2 \left (7+i \sqrt {15}-8 x^2\right )} \, dx}{\sqrt {15}}-\frac {(16 i) \int \frac {1}{\left (4+e^x\right )^2 \left (-7+i \sqrt {15}+8 x^2\right )} \, dx}{\sqrt {15}}+\frac {(28 i) \int \frac {x}{\left (4+e^x\right )^2 \left (7+i \sqrt {15}-8 x^2\right )} \, dx}{\sqrt {15}}+\frac {(28 i) \int \frac {x}{\left (4+e^x\right )^2 \left (-7+i \sqrt {15}+8 x^2\right )} \, dx}{\sqrt {15}}+\frac {(64 i) \int \frac {1}{\left (4+e^x\right )^3 \left (7+i \sqrt {15}-8 x^2\right )} \, dx}{\sqrt {15}}+\frac {(64 i) \int \frac {1}{\left (4+e^x\right )^3 \left (-7+i \sqrt {15}+8 x^2\right )} \, dx}{\sqrt {15}}+\frac {1}{30} \left (7 \left (15-7 i \sqrt {15}\right )\right ) \int \frac {1}{\left (4+e^x\right )^2 \left (-7-i \sqrt {15}+8 x^2\right )} \, dx-\frac {1}{15} \left (14 \left (15-7 i \sqrt {15}\right )\right ) \int \frac {1}{\left (4+e^x\right )^3 \left (-7-i \sqrt {15}+8 x^2\right )} \, dx+\frac {1}{30} \left (7 \left (15+7 i \sqrt {15}\right )\right ) \int \frac {1}{\left (4+e^x\right )^2 \left (-7+i \sqrt {15}+8 x^2\right )} \, dx-\frac {1}{15} \left (14 \left (15+7 i \sqrt {15}\right )\right ) \int \frac {1}{\left (4+e^x\right )^3 \left (-7+i \sqrt {15}+8 x^2\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 40, normalized size = 1.33 \begin {gather*} \frac {\left (16+8 e^x+e^{2 x}-x\right ) x^3}{\left (4+e^x\right )^2 \left (4-7 x^2+4 x^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 74, normalized size = 2.47 \begin {gather*} -\frac {x^{4} - x^{3} e^{\left (2 \, x\right )} - 8 \, x^{3} e^{x} - 16 \, x^{3}}{64 \, x^{4} - 112 \, x^{2} + {\left (4 \, x^{4} - 7 \, x^{2} + 4\right )} e^{\left (2 \, x\right )} + 8 \, {\left (4 \, x^{4} - 7 \, x^{2} + 4\right )} e^{x} + 64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 83, normalized size = 2.77 \begin {gather*} -\frac {x^{4} - x^{3} e^{\left (2 \, x\right )} - 8 \, x^{3} e^{x} - 16 \, x^{3}}{4 \, x^{4} e^{\left (2 \, x\right )} + 32 \, x^{4} e^{x} + 64 \, x^{4} - 7 \, x^{2} e^{\left (2 \, x\right )} - 56 \, x^{2} e^{x} - 112 \, x^{2} + 4 \, e^{\left (2 \, x\right )} + 32 \, e^{x} + 64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 44, normalized size = 1.47
method | result | size |
risch | \(\frac {x^{3}}{4 x^{4}-7 x^{2}+4}-\frac {x^{4}}{\left (4 x^{4}-7 x^{2}+4\right ) \left ({\mathrm e}^{x}+4\right )^{2}}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.00, size = 74, normalized size = 2.47 \begin {gather*} -\frac {x^{4} - x^{3} e^{\left (2 \, x\right )} - 8 \, x^{3} e^{x} - 16 \, x^{3}}{64 \, x^{4} - 112 \, x^{2} + {\left (4 \, x^{4} - 7 \, x^{2} + 4\right )} e^{\left (2 \, x\right )} + 8 \, {\left (4 \, x^{4} - 7 \, x^{2} + 4\right )} e^{x} + 64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.36, size = 37, normalized size = 1.23 \begin {gather*} \frac {x^3\,\left ({\mathrm {e}}^{2\,x}-x+8\,{\mathrm {e}}^x+16\right )}{{\left ({\mathrm {e}}^x+4\right )}^2\,\left (4\,x^4-7\,x^2+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.31, size = 61, normalized size = 2.03 \begin {gather*} - \frac {x^{4}}{64 x^{4} - 112 x^{2} + \left (4 x^{4} - 7 x^{2} + 4\right ) e^{2 x} + \left (32 x^{4} - 56 x^{2} + 32\right ) e^{x} + 64} + \frac {x^{3}}{4 x^{4} - 7 x^{2} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________