3.33.17
Optimal. Leaf size=33
________________________________________________________________________________________
Rubi [A] time = 3.81, antiderivative size = 34, normalized size of antiderivative = 1.03,
number of steps used = 5, number of rules used = 5, integrand size = 140, = 0.036, Rules used
= {6, 1594, 6688, 6711, 32}
Antiderivative was successfully verified.
[In]
Int[(E^((23*x + Log[4])/(E^2 - x))*(-2*E^4*x + 27*E^2*x^2 - 2*x^3 + x^2*Log[4]))/(E^4*x^4 - 2*E^2*x^5 + x^6 +
E^((2*(23*x + Log[4]))/(E^2 - x))*(E^4 - 2*E^2*x + x^2) + E^((23*x + Log[4])/(E^2 - x))*(-2*E^4*x^2 + 4*E^2*x^
3 - 2*x^4)),x]
[Out]
(1 - (4^(E^2 - x)^(-1)*E^((23*x)/(E^2 - x)))/x^2)^(-1)
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 32
Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]
Rule 1594
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6711
Int[(u_)*((a_.)*(v_)^(p_.) + (b_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(p*w*D[v, x] - q*v*D[w
, x])]}, Dist[c*p, Subst[Int[(b + a*x^p)^m, x], x, v*w^(m*q + 1)], x] /; FreeQ[c, x]] /; FreeQ[{a, b, m, p, q}
, x] && EqQ[p + q*(m*p + 1), 0] && IntegerQ[p] && IntegerQ[m]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 49, normalized size = 1.48
Antiderivative was successfully verified.
[In]
Integrate[(E^((23*x + Log[4])/(E^2 - x))*(-2*E^4*x + 27*E^2*x^2 - 2*x^3 + x^2*Log[4]))/(E^4*x^4 - 2*E^2*x^5 +
x^6 + E^((2*(23*x + Log[4]))/(E^2 - x))*(E^4 - 2*E^2*x + x^2) + E^((23*x + Log[4])/(E^2 - x))*(-2*E^4*x^2 + 4*
E^2*x^3 - 2*x^4)),x]
[Out]
-((E^23*x^2)/(1/(4^(-E^2 + x)^(-1)*E^((23*E^2)/(-E^2 + x))) - E^23*x^2))
________________________________________________________________________________________
fricas [A] time = 0.53, size = 31, normalized size = 0.94
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x^2*log(2)-2*x*exp(2)^2+27*x^2*exp(2)-2*x^3)*exp((2*log(2)+23*x)/(exp(2)-x))/((exp(2)^2-2*exp(2)*
x+x^2)*exp((2*log(2)+23*x)/(exp(2)-x))^2+(-2*x^2*exp(2)^2+4*x^3*exp(2)-2*x^4)*exp((2*log(2)+23*x)/(exp(2)-x))+
x^4*exp(2)^2-2*exp(2)*x^5+x^6),x, algorithm="fricas")
[Out]
x^2/(x^2 - e^(-(23*x + 2*log(2))/(x - e^2)))
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x^2*log(2)-2*x*exp(2)^2+27*x^2*exp(2)-2*x^3)*exp((2*log(2)+23*x)/(exp(2)-x))/((exp(2)^2-2*exp(2)*
x+x^2)*exp((2*log(2)+23*x)/(exp(2)-x))^2+(-2*x^2*exp(2)^2+4*x^3*exp(2)-2*x^4)*exp((2*log(2)+23*x)/(exp(2)-x))+
x^4*exp(2)^2-2*exp(2)*x^5+x^6),x, algorithm="giac")
[Out]
integrate(-(2*x^3 - 27*x^2*e^2 - 2*x^2*log(2) + 2*x*e^4)*e^(-(23*x + 2*log(2))/(x - e^2))/(x^6 - 2*x^5*e^2 + x
^4*e^4 - 2*(x^4 - 2*x^3*e^2 + x^2*e^4)*e^(-(23*x + 2*log(2))/(x - e^2)) + (x^2 - 2*x*e^2 + e^4)*e^(-2*(23*x +
2*log(2))/(x - e^2))), x)
________________________________________________________________________________________
maple [A] time = 5.14, size = 31, normalized size = 0.94
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((2*x^2*ln(2)-2*x*exp(2)^2+27*x^2*exp(2)-2*x^3)*exp((2*ln(2)+23*x)/(exp(2)-x))/((exp(2)^2-2*exp(2)*x+x^2)*e
xp((2*ln(2)+23*x)/(exp(2)-x))^2+(-2*x^2*exp(2)^2+4*x^3*exp(2)-2*x^4)*exp((2*ln(2)+23*x)/(exp(2)-x))+x^4*exp(2)
^2-2*exp(2)*x^5+x^6),x,method=_RETURNVERBOSE)
[Out]
x^2/(x^2-exp((2*ln(2)+23*x)/(exp(2)-x)))
________________________________________________________________________________________
maxima [A] time = 0.56, size = 35, normalized size = 1.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x^2*log(2)-2*x*exp(2)^2+27*x^2*exp(2)-2*x^3)*exp((2*log(2)+23*x)/(exp(2)-x))/((exp(2)^2-2*exp(2)*
x+x^2)*exp((2*log(2)+23*x)/(exp(2)-x))^2+(-2*x^2*exp(2)^2+4*x^3*exp(2)-2*x^4)*exp((2*log(2)+23*x)/(exp(2)-x))+
x^4*exp(2)^2-2*exp(2)*x^5+x^6),x, algorithm="maxima")
[Out]
1/(x^2*e^(23*e^2/(x - e^2) + 2*log(2)/(x - e^2) + 23) - 1)
________________________________________________________________________________________
mupad [B] time = 2.59, size = 164, normalized size = 4.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(-(23*x + 2*log(2))/(x - exp(2)))*(2*x*exp(4) - 27*x^2*exp(2) - 2*x^2*log(2) + 2*x^3))/(x^4*exp(4) -
2*x^5*exp(2) + x^6 - exp(-(23*x + 2*log(2))/(x - exp(2)))*(2*x^2*exp(4) - 4*x^3*exp(2) + 2*x^4) + exp(-(2*(23*
x + 2*log(2)))/(x - exp(2)))*(exp(4) - 2*x*exp(2) + x^2)),x)
[Out]
-(x^3*(exp(4) - 2*x*exp(2) + x^2)^2*(2*exp(4) - 27*x*exp(2) - 2*x*log(2) + 2*x^2))/((exp(-(23*x)/(x - exp(2)))
/2^(2/(x - exp(2))) - x^2)*(2*x*exp(12) - 35*x^6*exp(2) + 122*x^5*exp(4) - 178*x^4*exp(6) + 122*x^3*exp(8) - 3
5*x^2*exp(10) - x^6*log(4) + 2*x^7 + 4*x^5*exp(2)*log(4) - 6*x^4*exp(4)*log(4) + 4*x^3*exp(6)*log(4) - x^2*exp
(8)*log(4)))
________________________________________________________________________________________
sympy [A] time = 0.25, size = 22, normalized size = 0.67
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x**2*ln(2)-2*x*exp(2)**2+27*x**2*exp(2)-2*x**3)*exp((2*ln(2)+23*x)/(exp(2)-x))/((exp(2)**2-2*exp(
2)*x+x**2)*exp((2*ln(2)+23*x)/(exp(2)-x))**2+(-2*x**2*exp(2)**2+4*x**3*exp(2)-2*x**4)*exp((2*ln(2)+23*x)/(exp(
2)-x))+x**4*exp(2)**2-2*exp(2)*x**5+x**6),x)
[Out]
-x**2/(-x**2 + exp((23*x + 2*log(2))/(-x + exp(2))))
________________________________________________________________________________________