3.33.17 e23x+log(4)e2x(2e4x+27e2x22x3+x2log(4))e4x42e2x5+x6+e2(23x+log(4))e2x(e42e2x+x2)+e23x+log(4)e2x(2e4x2+4e2x32x4)dx

Optimal. Leaf size=33 5x2e23x+log(4)e2xx2

________________________________________________________________________________________

Rubi [A]  time = 3.81, antiderivative size = 34, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 5, integrand size = 140, number of rulesintegrand size = 0.036, Rules used = {6, 1594, 6688, 6711, 32} 1141e2xe23xe2xx2

Antiderivative was successfully verified.

[In]

Int[(E^((23*x + Log[4])/(E^2 - x))*(-2*E^4*x + 27*E^2*x^2 - 2*x^3 + x^2*Log[4]))/(E^4*x^4 - 2*E^2*x^5 + x^6 +
E^((2*(23*x + Log[4]))/(E^2 - x))*(E^4 - 2*E^2*x + x^2) + E^((23*x + Log[4])/(E^2 - x))*(-2*E^4*x^2 + 4*E^2*x^
3 - 2*x^4)),x]

[Out]

(1 - (4^(E^2 - x)^(-1)*E^((23*x)/(E^2 - x)))/x^2)^(-1)

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6711

Int[(u_)*((a_.)*(v_)^(p_.) + (b_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(p*w*D[v, x] - q*v*D[w
, x])]}, Dist[c*p, Subst[Int[(b + a*x^p)^m, x], x, v*w^(m*q + 1)], x] /; FreeQ[c, x]] /; FreeQ[{a, b, m, p, q}
, x] && EqQ[p + q*(m*p + 1), 0] && IntegerQ[p] && IntegerQ[m]

Rubi steps

integral=e23x+log(4)e2x(2e4x2x3+x2(27e2+log(4)))e4x42e2x5+x6+e2(23x+log(4))e2x(e42e2x+x2)+e23x+log(4)e2x(2e4x2+4e2x32x4)dx=e23x+log(4)e2xx(2e42x2+x(27e2+log(4)))e4x42e2x5+x6+e2(23x+log(4))e2x(e42e2x+x2)+e23x+log(4)e2x(2e4x2+4e2x32x4)dx=41e2xe23xe2xx(2e42x2+x(27e2+log(4)))(e2x)2(41e2xe23xe2xx2)2dx=Subst(1(1+x)2dx,x,41e2xe23xe2xx2)=1141e2xe23xe2xx2

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 49, normalized size = 1.48 e23x241e2+xe23e2e2+xe23x2

Antiderivative was successfully verified.

[In]

Integrate[(E^((23*x + Log[4])/(E^2 - x))*(-2*E^4*x + 27*E^2*x^2 - 2*x^3 + x^2*Log[4]))/(E^4*x^4 - 2*E^2*x^5 +
x^6 + E^((2*(23*x + Log[4]))/(E^2 - x))*(E^4 - 2*E^2*x + x^2) + E^((23*x + Log[4])/(E^2 - x))*(-2*E^4*x^2 + 4*
E^2*x^3 - 2*x^4)),x]

[Out]

-((E^23*x^2)/(1/(4^(-E^2 + x)^(-1)*E^((23*E^2)/(-E^2 + x))) - E^23*x^2))

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 31, normalized size = 0.94 x2x2e(23x+2log(2)xe2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2*log(2)-2*x*exp(2)^2+27*x^2*exp(2)-2*x^3)*exp((2*log(2)+23*x)/(exp(2)-x))/((exp(2)^2-2*exp(2)*
x+x^2)*exp((2*log(2)+23*x)/(exp(2)-x))^2+(-2*x^2*exp(2)^2+4*x^3*exp(2)-2*x^4)*exp((2*log(2)+23*x)/(exp(2)-x))+
x^4*exp(2)^2-2*exp(2)*x^5+x^6),x, algorithm="fricas")

[Out]

x^2/(x^2 - e^(-(23*x + 2*log(2))/(x - e^2)))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 (2x327x2e22x2log(2)+2xe4)e(23x+2log(2)xe2)x62x5e2+x4e42(x42x3e2+x2e4)e(23x+2log(2)xe2)+(x22xe2+e4)e(2(23x+2log(2))xe2)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2*log(2)-2*x*exp(2)^2+27*x^2*exp(2)-2*x^3)*exp((2*log(2)+23*x)/(exp(2)-x))/((exp(2)^2-2*exp(2)*
x+x^2)*exp((2*log(2)+23*x)/(exp(2)-x))^2+(-2*x^2*exp(2)^2+4*x^3*exp(2)-2*x^4)*exp((2*log(2)+23*x)/(exp(2)-x))+
x^4*exp(2)^2-2*exp(2)*x^5+x^6),x, algorithm="giac")

[Out]

integrate(-(2*x^3 - 27*x^2*e^2 - 2*x^2*log(2) + 2*x*e^4)*e^(-(23*x + 2*log(2))/(x - e^2))/(x^6 - 2*x^5*e^2 + x
^4*e^4 - 2*(x^4 - 2*x^3*e^2 + x^2*e^4)*e^(-(23*x + 2*log(2))/(x - e^2)) + (x^2 - 2*x*e^2 + e^4)*e^(-2*(23*x +
2*log(2))/(x - e^2))), x)

________________________________________________________________________________________

maple [A]  time = 5.14, size = 31, normalized size = 0.94




method result size



risch x2x2e2ln(2)+23xe2x 31
norman xe2ln(2)+23xe2x+e2e2ln(2)+23xe2x(x2e2ln(2)+23xe2x)(e2x) 79



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^2*ln(2)-2*x*exp(2)^2+27*x^2*exp(2)-2*x^3)*exp((2*ln(2)+23*x)/(exp(2)-x))/((exp(2)^2-2*exp(2)*x+x^2)*e
xp((2*ln(2)+23*x)/(exp(2)-x))^2+(-2*x^2*exp(2)^2+4*x^3*exp(2)-2*x^4)*exp((2*ln(2)+23*x)/(exp(2)-x))+x^4*exp(2)
^2-2*exp(2)*x^5+x^6),x,method=_RETURNVERBOSE)

[Out]

x^2/(x^2-exp((2*ln(2)+23*x)/(exp(2)-x)))

________________________________________________________________________________________

maxima [A]  time = 0.56, size = 35, normalized size = 1.06 1x2e(23e2xe2+2log(2)xe2+23)1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2*log(2)-2*x*exp(2)^2+27*x^2*exp(2)-2*x^3)*exp((2*log(2)+23*x)/(exp(2)-x))/((exp(2)^2-2*exp(2)*
x+x^2)*exp((2*log(2)+23*x)/(exp(2)-x))^2+(-2*x^2*exp(2)^2+4*x^3*exp(2)-2*x^4)*exp((2*log(2)+23*x)/(exp(2)-x))+
x^4*exp(2)^2-2*exp(2)*x^5+x^6),x, algorithm="maxima")

[Out]

1/(x^2*e^(23*e^2/(x - e^2) + 2*log(2)/(x - e^2) + 23) - 1)

________________________________________________________________________________________

mupad [B]  time = 2.59, size = 164, normalized size = 4.97 x3(x22e2x+e4)2(2e427xe22xln(2)+2x2)(e23xxe222xe2x2)(2xe1235x6e2+122x5e4178x4e6+122x3e835x2e10x6ln(4)+2x7+4x5e2ln(4)6x4e4ln(4)+4x3e6ln(4)x2e8ln(4))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-(23*x + 2*log(2))/(x - exp(2)))*(2*x*exp(4) - 27*x^2*exp(2) - 2*x^2*log(2) + 2*x^3))/(x^4*exp(4) -
2*x^5*exp(2) + x^6 - exp(-(23*x + 2*log(2))/(x - exp(2)))*(2*x^2*exp(4) - 4*x^3*exp(2) + 2*x^4) + exp(-(2*(23*
x + 2*log(2)))/(x - exp(2)))*(exp(4) - 2*x*exp(2) + x^2)),x)

[Out]

-(x^3*(exp(4) - 2*x*exp(2) + x^2)^2*(2*exp(4) - 27*x*exp(2) - 2*x*log(2) + 2*x^2))/((exp(-(23*x)/(x - exp(2)))
/2^(2/(x - exp(2))) - x^2)*(2*x*exp(12) - 35*x^6*exp(2) + 122*x^5*exp(4) - 178*x^4*exp(6) + 122*x^3*exp(8) - 3
5*x^2*exp(10) - x^6*log(4) + 2*x^7 + 4*x^5*exp(2)*log(4) - 6*x^4*exp(4)*log(4) + 4*x^3*exp(6)*log(4) - x^2*exp
(8)*log(4)))

________________________________________________________________________________________

sympy [A]  time = 0.25, size = 22, normalized size = 0.67 x2x2+e23x+2log(2)x+e2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x**2*ln(2)-2*x*exp(2)**2+27*x**2*exp(2)-2*x**3)*exp((2*ln(2)+23*x)/(exp(2)-x))/((exp(2)**2-2*exp(
2)*x+x**2)*exp((2*ln(2)+23*x)/(exp(2)-x))**2+(-2*x**2*exp(2)**2+4*x**3*exp(2)-2*x**4)*exp((2*ln(2)+23*x)/(exp(
2)-x))+x**4*exp(2)**2-2*exp(2)*x**5+x**6),x)

[Out]

-x**2/(-x**2 + exp((23*x + 2*log(2))/(-x + exp(2))))

________________________________________________________________________________________