3.33.22
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 36.91, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-25 - 10*x - x^2 + 25*x^3 + 10*x^4 + x^5 + E^2*(-5 - 15*x^2 + 5*x^3) + (10 + 2*x - 10*x^3 - 2*x^4)*Log[-2
+ 2*x^3] + (-1 + x^3)*Log[-2 + 2*x^3]^2)/(-25 - 10*x - x^2 + 25*x^3 + 10*x^4 + x^5 + (10 + 2*x - 10*x^3 - 2*x
^4)*Log[-2 + 2*x^3] + (-1 + x^3)*Log[-2 + 2*x^3]^2),x]
[Out]
x - (10*Defer[Int][1/((-1 + x)*(5 + x - Log[2*(-1 + x^3)])), x])/3 - (20*Defer[Int][(-5 - x + Log[2*(-1 + x^3)
])^(-1), x])/3 - (85*Defer[Int][(5 + x - Log[-2 + 2*x^3])^(-2), x])/3 + ((49 - 5*E^2)*Defer[Int][(5 + x - Log[
-2 + 2*x^3])^(-2), x])/3 + (5*(5 + E^2)*Defer[Int][(5 + x - Log[-2 + 2*x^3])^(-2), x])/3 + 2*(2 + 5*E^2)*Defer
[Int][(5 + x - Log[-2 + 2*x^3])^(-2), x] - ((1 + 15*E^2)*Defer[Int][(5 + x - Log[-2 + 2*x^3])^(-2), x])/3 + ((
(22*I)/3)*Defer[Int][1/((-1 + I*Sqrt[3] - 2*x)*(5 + x - Log[-2 + 2*x^3])^2), x])/Sqrt[3] - (((2*I)/3)*(49 - 5*
E^2)*Defer[Int][1/((-1 + I*Sqrt[3] - 2*x)*(5 + x - Log[-2 + 2*x^3])^2), x])/Sqrt[3] + (((20*I)/3)*(5 + E^2)*De
fer[Int][1/((-1 + I*Sqrt[3] - 2*x)*(5 + x - Log[-2 + 2*x^3])^2), x])/Sqrt[3] - ((4*I)*(2 + 5*E^2)*Defer[Int][1
/((-1 + I*Sqrt[3] - 2*x)*(5 + x - Log[-2 + 2*x^3])^2), x])/Sqrt[3] + Defer[Int][1/((-1 + x)*(5 + x - Log[-2 +
2*x^3])^2), x]/3 - ((1 + 15*E^2)*Defer[Int][1/((-1 + x)*(5 + x - Log[-2 + 2*x^3])^2), x])/3 - (20*Defer[Int][x
/(5 + x - Log[-2 + 2*x^3])^2, x])/3 - ((49 - 5*E^2)*Defer[Int][x/(5 + x - Log[-2 + 2*x^3])^2, x])/3 + (5*(5 +
E^2)*Defer[Int][x/(5 + x - Log[-2 + 2*x^3])^2, x])/3 + (5*(9 + E^2)*Defer[Int][x/(5 + x - Log[-2 + 2*x^3])^2,
x])/3 - ((1 + 15*E^2)*Defer[Int][x/(5 + x - Log[-2 + 2*x^3])^2, x])/3 + (20*Defer[Int][x^2/(5 + x - Log[-2 + 2
*x^3])^2, x])/3 + (5*(5 + E^2)*Defer[Int][x^2/(5 + x - Log[-2 + 2*x^3])^2, x])/3 - (5*(9 + E^2)*Defer[Int][x^2
/(5 + x - Log[-2 + 2*x^3])^2, x])/3 + (4*(3 + I*Sqrt[3])*Defer[Int][1/((1 - I*Sqrt[3] + 2*x)*(5 + x - Log[-2 +
2*x^3])^2), x])/3 - (2*(3 + I*Sqrt[3])*(2 + 5*E^2)*Defer[Int][1/((1 - I*Sqrt[3] + 2*x)*(5 + x - Log[-2 + 2*x^
3])^2), x])/3 + (((22*I)/3)*Defer[Int][1/((1 + I*Sqrt[3] + 2*x)*(5 + x - Log[-2 + 2*x^3])^2), x])/Sqrt[3] + (4
*(3 - I*Sqrt[3])*Defer[Int][1/((1 + I*Sqrt[3] + 2*x)*(5 + x - Log[-2 + 2*x^3])^2), x])/3 - (((2*I)/3)*(49 - 5*
E^2)*Defer[Int][1/((1 + I*Sqrt[3] + 2*x)*(5 + x - Log[-2 + 2*x^3])^2), x])/Sqrt[3] + (((20*I)/3)*(5 + E^2)*Def
er[Int][1/((1 + I*Sqrt[3] + 2*x)*(5 + x - Log[-2 + 2*x^3])^2), x])/Sqrt[3] - ((4*I)*(2 + 5*E^2)*Defer[Int][1/(
(1 + I*Sqrt[3] + 2*x)*(5 + x - Log[-2 + 2*x^3])^2), x])/Sqrt[3] - (2*(3 - I*Sqrt[3])*(2 + 5*E^2)*Defer[Int][1/
((1 + I*Sqrt[3] + 2*x)*(5 + x - Log[-2 + 2*x^3])^2), x])/3 - (20*Defer[Int][(5 + x - Log[-2 + 2*x^3])^(-1), x]
)/3 + (10*Defer[Int][1/((-1 + x)*(5 + x - Log[-2 + 2*x^3])), x])/3
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 0.79
Antiderivative was successfully verified.
[In]
Integrate[(-25 - 10*x - x^2 + 25*x^3 + 10*x^4 + x^5 + E^2*(-5 - 15*x^2 + 5*x^3) + (10 + 2*x - 10*x^3 - 2*x^4)*
Log[-2 + 2*x^3] + (-1 + x^3)*Log[-2 + 2*x^3]^2)/(-25 - 10*x - x^2 + 25*x^3 + 10*x^4 + x^5 + (10 + 2*x - 10*x^3
- 2*x^4)*Log[-2 + 2*x^3] + (-1 + x^3)*Log[-2 + 2*x^3]^2),x]
[Out]
x + (5*E^2)/(-5 - x + Log[2*(-1 + x^3)])
________________________________________________________________________________________
fricas [A] time = 0.56, size = 38, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^3-1)*log(2*x^3-2)^2+(-2*x^4-10*x^3+2*x+10)*log(2*x^3-2)+(5*x^3-15*x^2-5)*exp(2)+x^5+10*x^4+25*x^
3-x^2-10*x-25)/((x^3-1)*log(2*x^3-2)^2+(-2*x^4-10*x^3+2*x+10)*log(2*x^3-2)+x^5+10*x^4+25*x^3-x^2-10*x-25),x, a
lgorithm="fricas")
[Out]
(x^2 - x*log(2*x^3 - 2) + 5*x - 5*e^2)/(x - log(2*x^3 - 2) + 5)
________________________________________________________________________________________
giac [A] time = 0.27, size = 38, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^3-1)*log(2*x^3-2)^2+(-2*x^4-10*x^3+2*x+10)*log(2*x^3-2)+(5*x^3-15*x^2-5)*exp(2)+x^5+10*x^4+25*x^
3-x^2-10*x-25)/((x^3-1)*log(2*x^3-2)^2+(-2*x^4-10*x^3+2*x+10)*log(2*x^3-2)+x^5+10*x^4+25*x^3-x^2-10*x-25),x, a
lgorithm="giac")
[Out]
(x^2 - x*log(2*x^3 - 2) + 5*x - 5*e^2)/(x - log(2*x^3 - 2) + 5)
________________________________________________________________________________________
maple [A] time = 0.17, size = 22, normalized size = 0.79
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((x^3-1)*ln(2*x^3-2)^2+(-2*x^4-10*x^3+2*x+10)*ln(2*x^3-2)+(5*x^3-15*x^2-5)*exp(2)+x^5+10*x^4+25*x^3-x^2-10
*x-25)/((x^3-1)*ln(2*x^3-2)^2+(-2*x^4-10*x^3+2*x+10)*ln(2*x^3-2)+x^5+10*x^4+25*x^3-x^2-10*x-25),x,method=_RETU
RNVERBOSE)
[Out]
x-5*exp(2)/(5+x-ln(2*x^3-2))
________________________________________________________________________________________
maxima [B] time = 0.93, size = 57, normalized size = 2.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^3-1)*log(2*x^3-2)^2+(-2*x^4-10*x^3+2*x+10)*log(2*x^3-2)+(5*x^3-15*x^2-5)*exp(2)+x^5+10*x^4+25*x^
3-x^2-10*x-25)/((x^3-1)*log(2*x^3-2)^2+(-2*x^4-10*x^3+2*x+10)*log(2*x^3-2)+x^5+10*x^4+25*x^3-x^2-10*x-25),x, a
lgorithm="maxima")
[Out]
(x^2 - x*(log(2) - 5) - x*log(x^2 + x + 1) - x*log(x - 1) - 5*e^2)/(x - log(2) - log(x^2 + x + 1) - log(x - 1)
+ 5)
________________________________________________________________________________________
mupad [B] time = 2.20, size = 21, normalized size = 0.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(2*x^3 - 2)*(2*x - 10*x^3 - 2*x^4 + 10) - 10*x - exp(2)*(15*x^2 - 5*x^3 + 5) - x^2 + 25*x^3 + 10*x^4 +
x^5 + log(2*x^3 - 2)^2*(x^3 - 1) - 25)/(log(2*x^3 - 2)*(2*x - 10*x^3 - 2*x^4 + 10) - 10*x - x^2 + 25*x^3 + 10
*x^4 + x^5 + log(2*x^3 - 2)^2*(x^3 - 1) - 25),x)
[Out]
x - (5*exp(2))/(x - log(2*x^3 - 2) + 5)
________________________________________________________________________________________
sympy [A] time = 0.20, size = 17, normalized size = 0.61
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x**3-1)*ln(2*x**3-2)**2+(-2*x**4-10*x**3+2*x+10)*ln(2*x**3-2)+(5*x**3-15*x**2-5)*exp(2)+x**5+10*x*
*4+25*x**3-x**2-10*x-25)/((x**3-1)*ln(2*x**3-2)**2+(-2*x**4-10*x**3+2*x+10)*ln(2*x**3-2)+x**5+10*x**4+25*x**3-
x**2-10*x-25),x)
[Out]
x + 5*exp(2)/(-x + log(2*x**3 - 2) - 5)
________________________________________________________________________________________