Optimal. Leaf size=28 \[ -2+x-\frac {5 e^2}{5+x-\log \left (-2+x^2 \log \left (e^{2 x}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 36.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25-10 x-x^2+25 x^3+10 x^4+x^5+e^2 \left (-5-15 x^2+5 x^3\right )+\left (10+2 x-10 x^3-2 x^4\right ) \log \left (-2+2 x^3\right )+\left (-1+x^3\right ) \log ^2\left (-2+2 x^3\right )}{-25-10 x-x^2+25 x^3+10 x^4+x^5+\left (10+2 x-10 x^3-2 x^4\right ) \log \left (-2+2 x^3\right )+\left (-1+x^3\right ) \log ^2\left (-2+2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-(5+x)^2 \left (-1+x^3\right )-5 e^2 \left (-1-3 x^2+x^3\right )+2 \left (-5-x+5 x^3+x^4\right ) \log \left (2 \left (-1+x^3\right )\right )-\left (-1+x^3\right ) \log ^2\left (2 \left (-1+x^3\right )\right )}{\left (1-x^3\right ) \left (5+x-\log \left (-2+2 x^3\right )\right )^2} \, dx\\ &=\int \left (\frac {25 \left (1+\frac {e^2}{5}\right )+10 x+\left (1+15 e^2\right ) x^2-25 \left (1+\frac {e^2}{5}\right ) x^3-10 x^4-x^5-10 \log \left (2 \left (-1+x^3\right )\right )-2 x \log \left (2 \left (-1+x^3\right )\right )+10 x^3 \log \left (2 \left (-1+x^3\right )\right )+2 x^4 \log \left (2 \left (-1+x^3\right )\right )+\log ^2\left (2 \left (-1+x^3\right )\right )-x^3 \log ^2\left (2 \left (-1+x^3\right )\right )}{3 (1-x) \left (5+x-\log \left (-2+2 x^3\right )\right )^2}+\frac {(2+x) \left (25 \left (1+\frac {e^2}{5}\right )+10 x+\left (1+15 e^2\right ) x^2-25 \left (1+\frac {e^2}{5}\right ) x^3-10 x^4-x^5-10 \log \left (2 \left (-1+x^3\right )\right )-2 x \log \left (2 \left (-1+x^3\right )\right )+10 x^3 \log \left (2 \left (-1+x^3\right )\right )+2 x^4 \log \left (2 \left (-1+x^3\right )\right )+\log ^2\left (2 \left (-1+x^3\right )\right )-x^3 \log ^2\left (2 \left (-1+x^3\right )\right )\right )}{3 \left (1+x+x^2\right ) \left (5+x-\log \left (-2+2 x^3\right )\right )^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {25 \left (1+\frac {e^2}{5}\right )+10 x+\left (1+15 e^2\right ) x^2-25 \left (1+\frac {e^2}{5}\right ) x^3-10 x^4-x^5-10 \log \left (2 \left (-1+x^3\right )\right )-2 x \log \left (2 \left (-1+x^3\right )\right )+10 x^3 \log \left (2 \left (-1+x^3\right )\right )+2 x^4 \log \left (2 \left (-1+x^3\right )\right )+\log ^2\left (2 \left (-1+x^3\right )\right )-x^3 \log ^2\left (2 \left (-1+x^3\right )\right )}{(1-x) \left (5+x-\log \left (-2+2 x^3\right )\right )^2} \, dx+\frac {1}{3} \int \frac {(2+x) \left (25 \left (1+\frac {e^2}{5}\right )+10 x+\left (1+15 e^2\right ) x^2-25 \left (1+\frac {e^2}{5}\right ) x^3-10 x^4-x^5-10 \log \left (2 \left (-1+x^3\right )\right )-2 x \log \left (2 \left (-1+x^3\right )\right )+10 x^3 \log \left (2 \left (-1+x^3\right )\right )+2 x^4 \log \left (2 \left (-1+x^3\right )\right )+\log ^2\left (2 \left (-1+x^3\right )\right )-x^3 \log ^2\left (2 \left (-1+x^3\right )\right )\right )}{\left (1+x+x^2\right ) \left (5+x-\log \left (-2+2 x^3\right )\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {-(5+x)^2 \left (-1+x^3\right )-5 e^2 \left (-1-3 x^2+x^3\right )+2 \left (-5-x+5 x^3+x^4\right ) \log \left (2 \left (-1+x^3\right )\right )-\left (-1+x^3\right ) \log ^2\left (2 \left (-1+x^3\right )\right )}{(1-x) \left (5+x-\log \left (-2+2 x^3\right )\right )^2} \, dx+\frac {1}{3} \int \frac {(2+x) \left (-(5+x)^2 \left (-1+x^3\right )-5 e^2 \left (-1-3 x^2+x^3\right )+2 \left (-5-x+5 x^3+x^4\right ) \log \left (2 \left (-1+x^3\right )\right )-\left (-1+x^3\right ) \log ^2\left (2 \left (-1+x^3\right )\right )\right )}{\left (1+x+x^2\right ) \left (5+x-\log \left (-2+2 x^3\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 0.79 \begin {gather*} x+\frac {5 e^2}{-5-x+\log \left (2 \left (-1+x^3\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 38, normalized size = 1.36 \begin {gather*} \frac {x^{2} - x \log \left (2 \, x^{3} - 2\right ) + 5 \, x - 5 \, e^{2}}{x - \log \left (2 \, x^{3} - 2\right ) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 38, normalized size = 1.36 \begin {gather*} \frac {x^{2} - x \log \left (2 \, x^{3} - 2\right ) + 5 \, x - 5 \, e^{2}}{x - \log \left (2 \, x^{3} - 2\right ) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 22, normalized size = 0.79
method | result | size |
risch | \(x -\frac {5 \,{\mathrm e}^{2}}{5+x -\ln \left (2 x^{3}-2\right )}\) | \(22\) |
norman | \(\frac {x^{2}-25+5 \ln \left (2 x^{3}-2\right )-\ln \left (2 x^{3}-2\right ) x -5 \,{\mathrm e}^{2}}{5+x -\ln \left (2 x^{3}-2\right )}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.93, size = 57, normalized size = 2.04 \begin {gather*} \frac {x^{2} - x {\left (\log \relax (2) - 5\right )} - x \log \left (x^{2} + x + 1\right ) - x \log \left (x - 1\right ) - 5 \, e^{2}}{x - \log \relax (2) - \log \left (x^{2} + x + 1\right ) - \log \left (x - 1\right ) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.20, size = 21, normalized size = 0.75 \begin {gather*} x-\frac {5\,{\mathrm {e}}^2}{x-\ln \left (2\,x^3-2\right )+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 17, normalized size = 0.61 \begin {gather*} x + \frac {5 e^{2}}{- x + \log {\left (2 x^{3} - 2 \right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________