3.33.24
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [A] time = 4.24, antiderivative size = 41, normalized size of antiderivative = 1.41,
number of steps used = 6, number of rules used = 4, integrand size = 332, = 0.012, Rules used
= {6, 6688, 12, 6706}
Antiderivative was successfully verified.
[In]
Int[(E^((2*(121*x^2 + 36*E^4*x^2 + 36*E^8*x^2 + 22*x^3 + x^4 + E^2*(-132*x^2 - 12*x^3) + E^4*(132*x^2 - 72*E^2
*x^2 + 12*x^3)))/(4 - 8*x + 4*x^2 + E^2*(-4 + 8*x - 4*x^2) + E^4*(1 - 2*x + x^2) + E^8*(1 - 2*x + x^2) + E^4*(
4 - 8*x + 4*x^2 + E^2*(-2 + 4*x - 2*x^2))))*(-484*x - 144*E^4*x - 144*E^8*x - 132*x^2 + 36*x^3 + 4*x^4 + E^2*(
528*x + 72*x^2 - 24*x^3) + E^4*(-528*x + 288*E^2*x - 72*x^2 + 24*x^3)))/(-4 + 12*x - 12*x^2 + 4*x^3 + E^2*(4 -
12*x + 12*x^2 - 4*x^3) + E^4*(-1 + 3*x - 3*x^2 + x^3) + E^8*(-1 + 3*x - 3*x^2 + x^3) + E^4*(-4 + 12*x - 12*x^
2 + 4*x^3 + E^2*(2 - 6*x + 6*x^2 - 2*x^3))),x]
[Out]
E^((2*x^2*(11 - 6*E^2 + 6*E^4 + x)^2)/((2 - E^2 + E^4)^2*(1 - x)^2))
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6706
Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /; !FalseQ[q]
] /; FreeQ[F, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 39, normalized size = 1.34
Antiderivative was successfully verified.
[In]
Integrate[(E^((2*(121*x^2 + 36*E^4*x^2 + 36*E^8*x^2 + 22*x^3 + x^4 + E^2*(-132*x^2 - 12*x^3) + E^4*(132*x^2 -
72*E^2*x^2 + 12*x^3)))/(4 - 8*x + 4*x^2 + E^2*(-4 + 8*x - 4*x^2) + E^4*(1 - 2*x + x^2) + E^8*(1 - 2*x + x^2) +
E^4*(4 - 8*x + 4*x^2 + E^2*(-2 + 4*x - 2*x^2))))*(-484*x - 144*E^4*x - 144*E^8*x - 132*x^2 + 36*x^3 + 4*x^4 +
E^2*(528*x + 72*x^2 - 24*x^3) + E^4*(-528*x + 288*E^2*x - 72*x^2 + 24*x^3)))/(-4 + 12*x - 12*x^2 + 4*x^3 + E^
2*(4 - 12*x + 12*x^2 - 4*x^3) + E^4*(-1 + 3*x - 3*x^2 + x^3) + E^8*(-1 + 3*x - 3*x^2 + x^3) + E^4*(-4 + 12*x -
12*x^2 + 4*x^3 + E^2*(2 - 6*x + 6*x^2 - 2*x^3))),x]
[Out]
E^((2*x^2*(11 - 6*E^2 + 6*E^4 + x)^2)/((2 - E^2 + E^4)^2*(-1 + x)^2))
________________________________________________________________________________________
fricas [B] time = 0.49, size = 116, normalized size = 4.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-144*x*exp(4)^2+(288*exp(2)*x+24*x^3-72*x^2-528*x)*exp(4)-144*x*exp(2)^2+(-24*x^3+72*x^2+528*x)*exp
(2)+4*x^4+36*x^3-132*x^2-484*x)*exp((36*x^2*exp(4)^2+(-72*x^2*exp(2)+12*x^3+132*x^2)*exp(4)+36*x^2*exp(2)^2+(-
12*x^3-132*x^2)*exp(2)+x^4+22*x^3+121*x^2)/((x^2-2*x+1)*exp(4)^2+((-2*x^2+4*x-2)*exp(2)+4*x^2-8*x+4)*exp(4)+(x
^2-2*x+1)*exp(2)^2+(-4*x^2+8*x-4)*exp(2)+4*x^2-8*x+4))^2/((x^3-3*x^2+3*x-1)*exp(4)^2+((-2*x^3+6*x^2-6*x+2)*exp
(2)+4*x^3-12*x^2+12*x-4)*exp(4)+(x^3-3*x^2+3*x-1)*exp(2)^2+(-4*x^3+12*x^2-12*x+4)*exp(2)+4*x^3-12*x^2+12*x-4),
x, algorithm="fricas")
[Out]
e^(2*(x^4 + 22*x^3 + 36*x^2*e^8 - 72*x^2*e^6 + 121*x^2 + 12*(x^3 + 14*x^2)*e^4 - 12*(x^3 + 11*x^2)*e^2)/(4*x^2
+ (x^2 - 2*x + 1)*e^8 - 2*(x^2 - 2*x + 1)*e^6 + 5*(x^2 - 2*x + 1)*e^4 - 4*(x^2 - 2*x + 1)*e^2 - 8*x + 4))
________________________________________________________________________________________
giac [B] time = 1.45, size = 716, normalized size = 24.69
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-144*x*exp(4)^2+(288*exp(2)*x+24*x^3-72*x^2-528*x)*exp(4)-144*x*exp(2)^2+(-24*x^3+72*x^2+528*x)*exp
(2)+4*x^4+36*x^3-132*x^2-484*x)*exp((36*x^2*exp(4)^2+(-72*x^2*exp(2)+12*x^3+132*x^2)*exp(4)+36*x^2*exp(2)^2+(-
12*x^3-132*x^2)*exp(2)+x^4+22*x^3+121*x^2)/((x^2-2*x+1)*exp(4)^2+((-2*x^2+4*x-2)*exp(2)+4*x^2-8*x+4)*exp(4)+(x
^2-2*x+1)*exp(2)^2+(-4*x^2+8*x-4)*exp(2)+4*x^2-8*x+4))^2/((x^3-3*x^2+3*x-1)*exp(4)^2+((-2*x^3+6*x^2-6*x+2)*exp
(2)+4*x^3-12*x^2+12*x-4)*exp(4)+(x^3-3*x^2+3*x-1)*exp(2)^2+(-4*x^3+12*x^2-12*x+4)*exp(2)+4*x^3-12*x^2+12*x-4),
x, algorithm="giac")
[Out]
e^(2*x^4/(x^2*e^8 - 2*x^2*e^6 + 5*x^2*e^4 - 4*x^2*e^2 + 4*x^2 - 2*x*e^8 + 4*x*e^6 - 10*x*e^4 + 8*x*e^2 - 8*x +
e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + 24*x^3*e^4/(x^2*e^8 - 2*x^2*e^6 + 5*x^2*e^4 - 4*x^2*e^2 + 4*x^2 - 2*x*e^8
+ 4*x*e^6 - 10*x*e^4 + 8*x*e^2 - 8*x + e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 24*x^3*e^2/(x^2*e^8 - 2*x^2*e^6 + 5*
x^2*e^4 - 4*x^2*e^2 + 4*x^2 - 2*x*e^8 + 4*x*e^6 - 10*x*e^4 + 8*x*e^2 - 8*x + e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4)
+ 44*x^3/(x^2*e^8 - 2*x^2*e^6 + 5*x^2*e^4 - 4*x^2*e^2 + 4*x^2 - 2*x*e^8 + 4*x*e^6 - 10*x*e^4 + 8*x*e^2 - 8*x +
e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + 72*x^2*e^8/(x^2*e^8 - 2*x^2*e^6 + 5*x^2*e^4 - 4*x^2*e^2 + 4*x^2 - 2*x*e^8
+ 4*x*e^6 - 10*x*e^4 + 8*x*e^2 - 8*x + e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 144*x^2*e^6/(x^2*e^8 - 2*x^2*e^6 + 5
*x^2*e^4 - 4*x^2*e^2 + 4*x^2 - 2*x*e^8 + 4*x*e^6 - 10*x*e^4 + 8*x*e^2 - 8*x + e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4)
+ 336*x^2*e^4/(x^2*e^8 - 2*x^2*e^6 + 5*x^2*e^4 - 4*x^2*e^2 + 4*x^2 - 2*x*e^8 + 4*x*e^6 - 10*x*e^4 + 8*x*e^2 -
8*x + e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 264*x^2*e^2/(x^2*e^8 - 2*x^2*e^6 + 5*x^2*e^4 - 4*x^2*e^2 + 4*x^2 - 2
*x*e^8 + 4*x*e^6 - 10*x*e^4 + 8*x*e^2 - 8*x + e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + 242*x^2/(x^2*e^8 - 2*x^2*e^6
+ 5*x^2*e^4 - 4*x^2*e^2 + 4*x^2 - 2*x*e^8 + 4*x*e^6 - 10*x*e^4 + 8*x*e^2 - 8*x + e^8 - 2*e^6 + 5*e^4 - 4*e^2 +
4))
________________________________________________________________________________________
maple [B] time = 50.00, size = 68, normalized size = 2.34
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
gosper |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-144*x*exp(4)^2+(288*exp(2)*x+24*x^3-72*x^2-528*x)*exp(4)-144*x*exp(2)^2+(-24*x^3+72*x^2+528*x)*exp(2)+4*
x^4+36*x^3-132*x^2-484*x)*exp((36*x^2*exp(4)^2+(-72*x^2*exp(2)+12*x^3+132*x^2)*exp(4)+36*x^2*exp(2)^2+(-12*x^3
-132*x^2)*exp(2)+x^4+22*x^3+121*x^2)/((x^2-2*x+1)*exp(4)^2+((-2*x^2+4*x-2)*exp(2)+4*x^2-8*x+4)*exp(4)+(x^2-2*x
+1)*exp(2)^2+(-4*x^2+8*x-4)*exp(2)+4*x^2-8*x+4))^2/((x^3-3*x^2+3*x-1)*exp(4)^2+((-2*x^3+6*x^2-6*x+2)*exp(2)+4*
x^3-12*x^2+12*x-4)*exp(4)+(x^3-3*x^2+3*x-1)*exp(2)^2+(-4*x^3+12*x^2-12*x+4)*exp(2)+4*x^3-12*x^2+12*x-4),x,meth
od=_RETURNVERBOSE)
[Out]
exp(2*x^2*(72*exp(6)+12*exp(2)*x-12*x*exp(4)-x^2+132*exp(2)-168*exp(4)-36*exp(8)-22*x-121)/(x-1)^2/(4*exp(2)-5
*exp(4)+2*exp(6)-exp(8)-4))
________________________________________________________________________________________
maxima [B] time = 6.38, size = 711, normalized size = 24.52
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-144*x*exp(4)^2+(288*exp(2)*x+24*x^3-72*x^2-528*x)*exp(4)-144*x*exp(2)^2+(-24*x^3+72*x^2+528*x)*exp
(2)+4*x^4+36*x^3-132*x^2-484*x)*exp((36*x^2*exp(4)^2+(-72*x^2*exp(2)+12*x^3+132*x^2)*exp(4)+36*x^2*exp(2)^2+(-
12*x^3-132*x^2)*exp(2)+x^4+22*x^3+121*x^2)/((x^2-2*x+1)*exp(4)^2+((-2*x^2+4*x-2)*exp(2)+4*x^2-8*x+4)*exp(4)+(x
^2-2*x+1)*exp(2)^2+(-4*x^2+8*x-4)*exp(2)+4*x^2-8*x+4))^2/((x^3-3*x^2+3*x-1)*exp(4)^2+((-2*x^3+6*x^2-6*x+2)*exp
(2)+4*x^3-12*x^2+12*x-4)*exp(4)+(x^3-3*x^2+3*x-1)*exp(2)^2+(-4*x^3+12*x^2-12*x+4)*exp(2)+4*x^3-12*x^2+12*x-4),
x, algorithm="maxima")
[Out]
e^(2*x^2/(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + 24*x*e^4/(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 24*x*e^2/(e^8 - 2*e^
6 + 5*e^4 - 4*e^2 + 4) + 48*x/(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + 72*e^8/(x^2*(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4
) - 2*x*(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + 144*e^8/(x*(e^8 - 2*e^6 + 5*e^4
- 4*e^2 + 4) - e^8 + 2*e^6 - 5*e^4 + 4*e^2 - 4) + 72*e^8/(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 144*e^6/(x^2*(e^
8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 2*x*(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 28
8*e^6/(x*(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - e^8 + 2*e^6 - 5*e^4 + 4*e^2 - 4) - 144*e^6/(e^8 - 2*e^6 + 5*e^4 -
4*e^2 + 4) + 360*e^4/(x^2*(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 2*x*(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + e^8 - 2
*e^6 + 5*e^4 - 4*e^2 + 4) + 744*e^4/(x*(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - e^8 + 2*e^6 - 5*e^4 + 4*e^2 - 4) +
384*e^4/(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 288*e^2/(x^2*(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 2*x*(e^8 - 2*e^6
+ 5*e^4 - 4*e^2 + 4) + e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - 600*e^2/(x*(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) - e^8 +
2*e^6 - 5*e^4 + 4*e^2 - 4) - 312*e^2/(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + 288/(x^2*(e^8 - 2*e^6 + 5*e^4 - 4*e^
2 + 4) - 2*x*(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4) + 624/(x*(e^8 - 2*e^6 + 5*e^
4 - 4*e^2 + 4) - e^8 + 2*e^6 - 5*e^4 + 4*e^2 - 4) + 336/(e^8 - 2*e^6 + 5*e^4 - 4*e^2 + 4))
________________________________________________________________________________________
mupad [B] time = 3.13, size = 724, normalized size = 24.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp((2*(exp(4)*(132*x^2 - 72*x^2*exp(2) + 12*x^3) - exp(2)*(132*x^2 + 12*x^3) + 36*x^2*exp(4) + 36*x^2*e
xp(8) + 121*x^2 + 22*x^3 + x^4))/(exp(4)*(x^2 - 2*x + 1) - exp(2)*(4*x^2 - 8*x + 4) - exp(4)*(8*x + exp(2)*(2*
x^2 - 4*x + 2) - 4*x^2 - 4) - 8*x + exp(8)*(x^2 - 2*x + 1) + 4*x^2 + 4))*(484*x + 144*x*exp(4) + 144*x*exp(8)
- exp(2)*(528*x + 72*x^2 - 24*x^3) + exp(4)*(528*x - 288*x*exp(2) + 72*x^2 - 24*x^3) + 132*x^2 - 36*x^3 - 4*x^
4))/(12*x + exp(4)*(3*x - 3*x^2 + x^3 - 1) + exp(8)*(3*x - 3*x^2 + x^3 - 1) - exp(2)*(12*x - 12*x^2 + 4*x^3 -
4) - exp(4)*(exp(2)*(6*x - 6*x^2 + 2*x^3 - 2) - 12*x + 12*x^2 - 4*x^3 + 4) - 12*x^2 + 4*x^3 - 4),x)
[Out]
exp((2*x^4)/(5*exp(4) - 4*exp(2) - 8*x - 2*exp(6) + exp(8) + 8*x*exp(2) - 10*x*exp(4) + 4*x*exp(6) - 2*x*exp(8
) - 4*x^2*exp(2) + 5*x^2*exp(4) - 2*x^2*exp(6) + x^2*exp(8) + 4*x^2 + 4))*exp((44*x^3)/(5*exp(4) - 4*exp(2) -
8*x - 2*exp(6) + exp(8) + 8*x*exp(2) - 10*x*exp(4) + 4*x*exp(6) - 2*x*exp(8) - 4*x^2*exp(2) + 5*x^2*exp(4) - 2
*x^2*exp(6) + x^2*exp(8) + 4*x^2 + 4))*exp((242*x^2)/(5*exp(4) - 4*exp(2) - 8*x - 2*exp(6) + exp(8) + 8*x*exp(
2) - 10*x*exp(4) + 4*x*exp(6) - 2*x*exp(8) - 4*x^2*exp(2) + 5*x^2*exp(4) - 2*x^2*exp(6) + x^2*exp(8) + 4*x^2 +
4))*exp(-(24*x^3*exp(2))/(5*exp(4) - 4*exp(2) - 8*x - 2*exp(6) + exp(8) + 8*x*exp(2) - 10*x*exp(4) + 4*x*exp(
6) - 2*x*exp(8) - 4*x^2*exp(2) + 5*x^2*exp(4) - 2*x^2*exp(6) + x^2*exp(8) + 4*x^2 + 4))*exp((24*x^3*exp(4))/(5
*exp(4) - 4*exp(2) - 8*x - 2*exp(6) + exp(8) + 8*x*exp(2) - 10*x*exp(4) + 4*x*exp(6) - 2*x*exp(8) - 4*x^2*exp(
2) + 5*x^2*exp(4) - 2*x^2*exp(6) + x^2*exp(8) + 4*x^2 + 4))*exp((72*x^2*exp(8))/(5*exp(4) - 4*exp(2) - 8*x - 2
*exp(6) + exp(8) + 8*x*exp(2) - 10*x*exp(4) + 4*x*exp(6) - 2*x*exp(8) - 4*x^2*exp(2) + 5*x^2*exp(4) - 2*x^2*ex
p(6) + x^2*exp(8) + 4*x^2 + 4))*exp(-(144*x^2*exp(6))/(5*exp(4) - 4*exp(2) - 8*x - 2*exp(6) + exp(8) + 8*x*exp
(2) - 10*x*exp(4) + 4*x*exp(6) - 2*x*exp(8) - 4*x^2*exp(2) + 5*x^2*exp(4) - 2*x^2*exp(6) + x^2*exp(8) + 4*x^2
+ 4))*exp(-(264*x^2*exp(2))/(5*exp(4) - 4*exp(2) - 8*x - 2*exp(6) + exp(8) + 8*x*exp(2) - 10*x*exp(4) + 4*x*ex
p(6) - 2*x*exp(8) - 4*x^2*exp(2) + 5*x^2*exp(4) - 2*x^2*exp(6) + x^2*exp(8) + 4*x^2 + 4))*exp((336*x^2*exp(4))
/(5*exp(4) - 4*exp(2) - 8*x - 2*exp(6) + exp(8) + 8*x*exp(2) - 10*x*exp(4) + 4*x*exp(6) - 2*x*exp(8) - 4*x^2*e
xp(2) + 5*x^2*exp(4) - 2*x^2*exp(6) + x^2*exp(8) + 4*x^2 + 4))
________________________________________________________________________________________
sympy [B] time = 3.60, size = 148, normalized size = 5.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-144*x*exp(4)**2+(288*exp(2)*x+24*x**3-72*x**2-528*x)*exp(4)-144*x*exp(2)**2+(-24*x**3+72*x**2+528*
x)*exp(2)+4*x**4+36*x**3-132*x**2-484*x)*exp((36*x**2*exp(4)**2+(-72*x**2*exp(2)+12*x**3+132*x**2)*exp(4)+36*x
**2*exp(2)**2+(-12*x**3-132*x**2)*exp(2)+x**4+22*x**3+121*x**2)/((x**2-2*x+1)*exp(4)**2+((-2*x**2+4*x-2)*exp(2
)+4*x**2-8*x+4)*exp(4)+(x**2-2*x+1)*exp(2)**2+(-4*x**2+8*x-4)*exp(2)+4*x**2-8*x+4))**2/((x**3-3*x**2+3*x-1)*ex
p(4)**2+((-2*x**3+6*x**2-6*x+2)*exp(2)+4*x**3-12*x**2+12*x-4)*exp(4)+(x**3-3*x**2+3*x-1)*exp(2)**2+(-4*x**3+12
*x**2-12*x+4)*exp(2)+4*x**3-12*x**2+12*x-4),x)
[Out]
exp(2*(x**4 + 22*x**3 + 121*x**2 + 36*x**2*exp(4) + 36*x**2*exp(8) + (-12*x**3 - 132*x**2)*exp(2) + (12*x**3 -
72*x**2*exp(2) + 132*x**2)*exp(4))/(4*x**2 - 8*x + (-4*x**2 + 8*x - 4)*exp(2) + (x**2 - 2*x + 1)*exp(4) + (x*
*2 - 2*x + 1)*exp(8) + (4*x**2 - 8*x + (-2*x**2 + 4*x - 2)*exp(2) + 4)*exp(4) + 4))
________________________________________________________________________________________