3.33.35 10+20x+75x240x3+e2(5+10x+75x220x3)+ex(2+6x+17x23x32x4+e2(1+3x+16x2+x3x4))2+e2dx

Optimal. Leaf size=29 (5+ex)x(1+x(1+(552+e2x)x))

________________________________________________________________________________________

Rubi [B]  time = 0.40, antiderivative size = 227, normalized size of antiderivative = 7.83, number of steps used = 37, number of rules used = 4, integrand size = 88, number of rulesintegrand size = 0.045, Rules used = {12, 2196, 2194, 2176} 2exx42+e2ex+2x42+e25e2x42+e210x42+e2+5exx32+e2+5ex+2x32+e2+25e2x32+e2+25x32+e2+2exx22+e2+ex+2x22+e2+5e2x22+e2+10x22+e2+2exx2+e2+ex+2x2+e2+5e2x2+e2+10x2+e2

Antiderivative was successfully verified.

[In]

Int[(10 + 20*x + 75*x^2 - 40*x^3 + E^2*(5 + 10*x + 75*x^2 - 20*x^3) + E^x*(2 + 6*x + 17*x^2 - 3*x^3 - 2*x^4 +
E^2*(1 + 3*x + 16*x^2 + x^3 - x^4)))/(2 + E^2),x]

[Out]

(10*x)/(2 + E^2) + (5*E^2*x)/(2 + E^2) + (2*E^x*x)/(2 + E^2) + (E^(2 + x)*x)/(2 + E^2) + (10*x^2)/(2 + E^2) +
(5*E^2*x^2)/(2 + E^2) + (2*E^x*x^2)/(2 + E^2) + (E^(2 + x)*x^2)/(2 + E^2) + (25*x^3)/(2 + E^2) + (25*E^2*x^3)/
(2 + E^2) + (5*E^x*x^3)/(2 + E^2) + (5*E^(2 + x)*x^3)/(2 + E^2) - (10*x^4)/(2 + E^2) - (5*E^2*x^4)/(2 + E^2) -
 (2*E^x*x^4)/(2 + E^2) - (E^(2 + x)*x^4)/(2 + E^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rubi steps

integral=(10+20x+75x240x3+e2(5+10x+75x220x3)+ex(2+6x+17x23x32x4+e2(1+3x+16x2+x3x4)))dx2+e2=10x2+e2+10x22+e2+25x32+e210x42+e2+ex(2+6x+17x23x32x4+e2(1+3x+16x2+x3x4))dx2+e2+e2(5+10x+75x220x3)dx2+e2=10x2+e2+5e2x2+e2+10x22+e2+5e2x22+e2+25x32+e2+25e2x32+e210x42+e25e2x42+e2+(2ex+6exx+17exx23exx32exx4e2+x(13x16x2x3+x4))dx2+e2=10x2+e2+5e2x2+e2+10x22+e2+5e2x22+e2+25x32+e2+25e2x32+e210x42+e25e2x42+e2e2+x(13x16x2x3+x4)dx2+e2+2exdx2+e22exx4dx2+e23exx3dx2+e2+6exxdx2+e2+17exx2dx2+e2=2ex2+e2+10x2+e2+5e2x2+e2+6exx2+e2+10x22+e2+5e2x22+e2+17exx22+e2+25x32+e2+25e2x32+e23exx32+e210x42+e25e2x42+e22exx42+e2(e2+x3e2+xx16e2+xx2e2+xx3+e2+xx4)dx2+e26exdx2+e2+8exx3dx2+e2+9exx2dx2+e234exxdx2+e2=4ex2+e2+10x2+e2+5e2x2+e228exx2+e2+10x22+e2+5e2x22+e2+26exx22+e2+25x32+e2+25e2x32+e2+5exx32+e210x42+e25e2x42+e22exx42+e2+e2+xdx2+e2+e2+xx3dx2+e2e2+xx4dx2+e2+3e2+xxdx2+e2+16e2+xx2dx2+e218exxdx2+e224exx2dx2+e2+34exdx2+e2=30ex2+e2+e2+x2+e2+10x2+e2+5e2x2+e246exx2+e2+3e2+xx2+e2+10x22+e2+5e2x22+e2+2exx22+e2+16e2+xx22+e2+25x32+e2+25e2x32+e2+5exx32+e2+e2+xx32+e210x42+e25e2x42+e22exx42+e2e2+xx42+e23e2+xdx2+e23e2+xx2dx2+e2+4e2+xx3dx2+e2+18exdx2+e232e2+xxdx2+e2+48exxdx2+e2=48ex2+e22e2+x2+e2+10x2+e2+5e2x2+e2+2exx2+e229e2+xx2+e2+10x22+e2+5e2x22+e2+2exx22+e2+13e2+xx22+e2+25x32+e2+25e2x32+e2+5exx32+e2+5e2+xx32+e210x42+e25e2x42+e22exx42+e2e2+xx42+e2+6e2+xxdx2+e212e2+xx2dx2+e2+32e2+xdx2+e248exdx2+e2=30e2+x2+e2+10x2+e2+5e2x2+e2+2exx2+e223e2+xx2+e2+10x22+e2+5e2x22+e2+2exx22+e2+e2+xx22+e2+25x32+e2+25e2x32+e2+5exx32+e2+5e2+xx32+e210x42+e25e2x42+e22exx42+e2e2+xx42+e26e2+xdx2+e2+24e2+xxdx2+e2=24e2+x2+e2+10x2+e2+5e2x2+e2+2exx2+e2+e2+xx2+e2+10x22+e2+5e2x22+e2+2exx22+e2+e2+xx22+e2+25x32+e2+25e2x32+e2+5exx32+e2+5e2+xx32+e210x42+e25e2x42+e22exx42+e2e2+xx42+e224e2+xdx2+e2=10x2+e2+5e2x2+e2+2exx2+e2+e2+xx2+e2+10x22+e2+5e2x22+e2+2exx22+e2+e2+xx22+e2+25x32+e2+25e2x32+e2+5exx32+e2+5e2+xx32+e210x42+e25e2x42+e22exx42+e2e2+xx42+e2

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 47, normalized size = 1.62 (5+ex)x(22x5x2+2x3+e2(1x5x2+x3))2+e2

Antiderivative was successfully verified.

[In]

Integrate[(10 + 20*x + 75*x^2 - 40*x^3 + E^2*(5 + 10*x + 75*x^2 - 20*x^3) + E^x*(2 + 6*x + 17*x^2 - 3*x^3 - 2*
x^4 + E^2*(1 + 3*x + 16*x^2 + x^3 - x^4)))/(2 + E^2),x]

[Out]

-(((5 + E^x)*x*(-2 - 2*x - 5*x^2 + 2*x^3 + E^2*(-1 - x - 5*x^2 + x^3)))/(2 + E^2))

________________________________________________________________________________________

fricas [B]  time = 0.66, size = 90, normalized size = 3.10 10x425x310x2+5(x45x3x2x)e2+(2x45x32x2+(x45x3x2x)e22x)ex10xe2+2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^4+x^3+16*x^2+3*x+1)*exp(2)-2*x^4-3*x^3+17*x^2+6*x+2)*exp(x)+(-20*x^3+75*x^2+10*x+5)*exp(2)-40*
x^3+75*x^2+20*x+10)/(exp(2)+2),x, algorithm="fricas")

[Out]

-(10*x^4 - 25*x^3 - 10*x^2 + 5*(x^4 - 5*x^3 - x^2 - x)*e^2 + (2*x^4 - 5*x^3 - 2*x^2 + (x^4 - 5*x^3 - x^2 - x)*
e^2 - 2*x)*e^x - 10*x)/(e^2 + 2)

________________________________________________________________________________________

giac [B]  time = 0.14, size = 92, normalized size = 3.17 10x425x310x2+5(x45x3x2x)e2+(x45x3x2x)e(x+2)+(2x45x32x22x)ex10xe2+2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^4+x^3+16*x^2+3*x+1)*exp(2)-2*x^4-3*x^3+17*x^2+6*x+2)*exp(x)+(-20*x^3+75*x^2+10*x+5)*exp(2)-40*
x^3+75*x^2+20*x+10)/(exp(2)+2),x, algorithm="giac")

[Out]

-(10*x^4 - 25*x^3 - 10*x^2 + 5*(x^4 - 5*x^3 - x^2 - x)*e^2 + (x^4 - 5*x^3 - x^2 - x)*e^(x + 2) + (2*x^4 - 5*x^
3 - 2*x^2 - 2*x)*e^x - 10*x)/(e^2 + 2)

________________________________________________________________________________________

maple [B]  time = 0.04, size = 64, normalized size = 2.21




method result size



norman exx+exx2+5x+5x25x4exx4+25(e2+1)x3e2+2+5(e2+1)x3exe2+2 64
risch 5x4e2e2+2+25x3e2e2+210x4e2+2+5x2e2e2+2+25x3e2+2+5e2xe2+2+10x2e2+2+10xe2+2+(x4e2+5x3e22x4+x2e2+5x3+e2x+2x2+2x)exe2+2 146
default 10x+e2ex+e2(exx33exx2+6exx6ex)+2exx+2exx2+5exx32exx4+3e2(exxex)+16e2(exx22exx+2ex)e2(exx44exx3+12exx224exx+24ex)+e2(5x4+25x3+5x2+5x)+10x2+25x310x4e2+2 173



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-x^4+x^3+16*x^2+3*x+1)*exp(2)-2*x^4-3*x^3+17*x^2+6*x+2)*exp(x)+(-20*x^3+75*x^2+10*x+5)*exp(2)-40*x^3+75
*x^2+20*x+10)/(exp(2)+2),x,method=_RETURNVERBOSE)

[Out]

exp(x)*x+exp(x)*x^2+5*x+5*x^2-5*x^4-exp(x)*x^4+25*(exp(2)+1)/(exp(2)+2)*x^3+5*(exp(2)+1)/(exp(2)+2)*x^3*exp(x)

________________________________________________________________________________________

maxima [B]  time = 0.38, size = 85, normalized size = 2.93 10x425x310x2+5(x45x3x2x)e2+(x4(e2+2)5x3(e2+1)x2(e2+2)x(e2+2))ex10xe2+2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^4+x^3+16*x^2+3*x+1)*exp(2)-2*x^4-3*x^3+17*x^2+6*x+2)*exp(x)+(-20*x^3+75*x^2+10*x+5)*exp(2)-40*
x^3+75*x^2+20*x+10)/(exp(2)+2),x, algorithm="maxima")

[Out]

-(10*x^4 - 25*x^3 - 10*x^2 + 5*(x^4 - 5*x^3 - x^2 - x)*e^2 + (x^4*(e^2 + 2) - 5*x^3*(e^2 + 1) - x^2*(e^2 + 2)
- x*(e^2 + 2))*e^x - 10*x)/(e^2 + 2)

________________________________________________________________________________________

mupad [B]  time = 2.04, size = 47, normalized size = 1.62 x(ex+5)(2x+e2+xe2+5x2e2x3e2+5x22x3+2)e2+2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((20*x + exp(x)*(6*x + exp(2)*(3*x + 16*x^2 + x^3 - x^4 + 1) + 17*x^2 - 3*x^3 - 2*x^4 + 2) + exp(2)*(10*x +
 75*x^2 - 20*x^3 + 5) + 75*x^2 - 40*x^3 + 10)/(exp(2) + 2),x)

[Out]

(x*(exp(x) + 5)*(2*x + exp(2) + x*exp(2) + 5*x^2*exp(2) - x^3*exp(2) + 5*x^2 - 2*x^3 + 2))/(exp(2) + 2)

________________________________________________________________________________________

sympy [B]  time = 0.23, size = 82, normalized size = 2.83 5x4+x3(25+25e2)2+e2+5x2+5x+(x4e22x4+5x3+5x3e2+2x2+x2e2+2x+xe2)ex2+e2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x**4+x**3+16*x**2+3*x+1)*exp(2)-2*x**4-3*x**3+17*x**2+6*x+2)*exp(x)+(-20*x**3+75*x**2+10*x+5)*ex
p(2)-40*x**3+75*x**2+20*x+10)/(exp(2)+2),x)

[Out]

-5*x**4 + x**3*(25 + 25*exp(2))/(2 + exp(2)) + 5*x**2 + 5*x + (-x**4*exp(2) - 2*x**4 + 5*x**3 + 5*x**3*exp(2)
+ 2*x**2 + x**2*exp(2) + 2*x + x*exp(2))*exp(x)/(2 + exp(2))

________________________________________________________________________________________