3.33.35
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [B] time = 0.40, antiderivative size = 227, normalized size of antiderivative = 7.83,
number of steps used = 37, number of rules used = 4, integrand size = 88, = 0.045, Rules used
= {12, 2196, 2194, 2176}
Antiderivative was successfully verified.
[In]
Int[(10 + 20*x + 75*x^2 - 40*x^3 + E^2*(5 + 10*x + 75*x^2 - 20*x^3) + E^x*(2 + 6*x + 17*x^2 - 3*x^3 - 2*x^4 +
E^2*(1 + 3*x + 16*x^2 + x^3 - x^4)))/(2 + E^2),x]
[Out]
(10*x)/(2 + E^2) + (5*E^2*x)/(2 + E^2) + (2*E^x*x)/(2 + E^2) + (E^(2 + x)*x)/(2 + E^2) + (10*x^2)/(2 + E^2) +
(5*E^2*x^2)/(2 + E^2) + (2*E^x*x^2)/(2 + E^2) + (E^(2 + x)*x^2)/(2 + E^2) + (25*x^3)/(2 + E^2) + (25*E^2*x^3)/
(2 + E^2) + (5*E^x*x^3)/(2 + E^2) + (5*E^(2 + x)*x^3)/(2 + E^2) - (10*x^4)/(2 + E^2) - (5*E^2*x^4)/(2 + E^2) -
(2*E^x*x^4)/(2 + E^2) - (E^(2 + x)*x^4)/(2 + E^2)
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2196
Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] && !$UseGamma === True
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 47, normalized size = 1.62
Antiderivative was successfully verified.
[In]
Integrate[(10 + 20*x + 75*x^2 - 40*x^3 + E^2*(5 + 10*x + 75*x^2 - 20*x^3) + E^x*(2 + 6*x + 17*x^2 - 3*x^3 - 2*
x^4 + E^2*(1 + 3*x + 16*x^2 + x^3 - x^4)))/(2 + E^2),x]
[Out]
-(((5 + E^x)*x*(-2 - 2*x - 5*x^2 + 2*x^3 + E^2*(-1 - x - 5*x^2 + x^3)))/(2 + E^2))
________________________________________________________________________________________
fricas [B] time = 0.66, size = 90, normalized size = 3.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^4+x^3+16*x^2+3*x+1)*exp(2)-2*x^4-3*x^3+17*x^2+6*x+2)*exp(x)+(-20*x^3+75*x^2+10*x+5)*exp(2)-40*
x^3+75*x^2+20*x+10)/(exp(2)+2),x, algorithm="fricas")
[Out]
-(10*x^4 - 25*x^3 - 10*x^2 + 5*(x^4 - 5*x^3 - x^2 - x)*e^2 + (2*x^4 - 5*x^3 - 2*x^2 + (x^4 - 5*x^3 - x^2 - x)*
e^2 - 2*x)*e^x - 10*x)/(e^2 + 2)
________________________________________________________________________________________
giac [B] time = 0.14, size = 92, normalized size = 3.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^4+x^3+16*x^2+3*x+1)*exp(2)-2*x^4-3*x^3+17*x^2+6*x+2)*exp(x)+(-20*x^3+75*x^2+10*x+5)*exp(2)-40*
x^3+75*x^2+20*x+10)/(exp(2)+2),x, algorithm="giac")
[Out]
-(10*x^4 - 25*x^3 - 10*x^2 + 5*(x^4 - 5*x^3 - x^2 - x)*e^2 + (x^4 - 5*x^3 - x^2 - x)*e^(x + 2) + (2*x^4 - 5*x^
3 - 2*x^2 - 2*x)*e^x - 10*x)/(e^2 + 2)
________________________________________________________________________________________
maple [B] time = 0.04, size = 64, normalized size = 2.21
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-x^4+x^3+16*x^2+3*x+1)*exp(2)-2*x^4-3*x^3+17*x^2+6*x+2)*exp(x)+(-20*x^3+75*x^2+10*x+5)*exp(2)-40*x^3+75
*x^2+20*x+10)/(exp(2)+2),x,method=_RETURNVERBOSE)
[Out]
exp(x)*x+exp(x)*x^2+5*x+5*x^2-5*x^4-exp(x)*x^4+25*(exp(2)+1)/(exp(2)+2)*x^3+5*(exp(2)+1)/(exp(2)+2)*x^3*exp(x)
________________________________________________________________________________________
maxima [B] time = 0.38, size = 85, normalized size = 2.93
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^4+x^3+16*x^2+3*x+1)*exp(2)-2*x^4-3*x^3+17*x^2+6*x+2)*exp(x)+(-20*x^3+75*x^2+10*x+5)*exp(2)-40*
x^3+75*x^2+20*x+10)/(exp(2)+2),x, algorithm="maxima")
[Out]
-(10*x^4 - 25*x^3 - 10*x^2 + 5*(x^4 - 5*x^3 - x^2 - x)*e^2 + (x^4*(e^2 + 2) - 5*x^3*(e^2 + 1) - x^2*(e^2 + 2)
- x*(e^2 + 2))*e^x - 10*x)/(e^2 + 2)
________________________________________________________________________________________
mupad [B] time = 2.04, size = 47, normalized size = 1.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((20*x + exp(x)*(6*x + exp(2)*(3*x + 16*x^2 + x^3 - x^4 + 1) + 17*x^2 - 3*x^3 - 2*x^4 + 2) + exp(2)*(10*x +
75*x^2 - 20*x^3 + 5) + 75*x^2 - 40*x^3 + 10)/(exp(2) + 2),x)
[Out]
(x*(exp(x) + 5)*(2*x + exp(2) + x*exp(2) + 5*x^2*exp(2) - x^3*exp(2) + 5*x^2 - 2*x^3 + 2))/(exp(2) + 2)
________________________________________________________________________________________
sympy [B] time = 0.23, size = 82, normalized size = 2.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x**4+x**3+16*x**2+3*x+1)*exp(2)-2*x**4-3*x**3+17*x**2+6*x+2)*exp(x)+(-20*x**3+75*x**2+10*x+5)*ex
p(2)-40*x**3+75*x**2+20*x+10)/(exp(2)+2),x)
[Out]
-5*x**4 + x**3*(25 + 25*exp(2))/(2 + exp(2)) + 5*x**2 + 5*x + (-x**4*exp(2) - 2*x**4 + 5*x**3 + 5*x**3*exp(2)
+ 2*x**2 + x**2*exp(2) + 2*x + x*exp(2))*exp(x)/(2 + exp(2))
________________________________________________________________________________________