3.33.45 3x4+e9+6x2+x4x3(2727x6x26x3+x5)x4+2x5+x6dx

Optimal. Leaf size=22 2+e(3+x2)2x3+x1+x

________________________________________________________________________________________

Rubi [F]  time = 1.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 3x4+e9+6x2+x4x3(2727x6x26x3+x5)x4+2x5+x6dx

Verification is not applicable to the result.

[In]

Int[(3*x^4 + E^((9 + 6*x^2 + x^4)/x^3)*(-27 - 27*x - 6*x^2 - 6*x^3 + x^5))/(x^4 + 2*x^5 + x^6),x]

[Out]

-3/(1 + x) - 27*Defer[Int][E^((3 + x^2)^2/x^3)/x^4, x] + 27*Defer[Int][E^((3 + x^2)^2/x^3)/x^3, x] - 33*Defer[
Int][E^((3 + x^2)^2/x^3)/x^2, x] + 33*Defer[Int][E^((3 + x^2)^2/x^3)/x, x] - Defer[Int][E^((3 + x^2)^2/x^3)/(1
 + x)^2, x] - 32*Defer[Int][E^((3 + x^2)^2/x^3)/(1 + x), x]

Rubi steps

integral=3x4+e9+6x2+x4x3(2727x6x26x3+x5)x4(1+2x+x2)dx=3x4+e9+6x2+x4x3(2727x6x26x3+x5)x4(1+x)2dx=(3(1+x)2+e(3+x2)2x3(2727x6x26x3+x5)x4(1+x)2)dx=31+x+e(3+x2)2x3(2727x6x26x3+x5)x4(1+x)2dx=31+x+(27e(3+x2)2x3x4+27e(3+x2)2x3x333e(3+x2)2x3x2+33e(3+x2)2x3xe(3+x2)2x3(1+x)232e(3+x2)2x31+x)dx=31+x27e(3+x2)2x3x4dx+27e(3+x2)2x3x3dx32e(3+x2)2x31+xdx33e(3+x2)2x3x2dx+33e(3+x2)2x3xdxe(3+x2)2x3(1+x)2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 21, normalized size = 0.95 3+e(3+x2)2x31+x

Antiderivative was successfully verified.

[In]

Integrate[(3*x^4 + E^((9 + 6*x^2 + x^4)/x^3)*(-27 - 27*x - 6*x^2 - 6*x^3 + x^5))/(x^4 + 2*x^5 + x^6),x]

[Out]

(-3 + E^((3 + x^2)^2/x^3))/(1 + x)

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 23, normalized size = 1.05 e(x4+6x2+9x3)3x+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^5-6*x^3-6*x^2-27*x-27)*exp((x^4+6*x^2+9)/x^3)+3*x^4)/(x^6+2*x^5+x^4),x, algorithm="fricas")

[Out]

(e^((x^4 + 6*x^2 + 9)/x^3) - 3)/(x + 1)

________________________________________________________________________________________

giac [A]  time = 0.41, size = 23, normalized size = 1.05 e(x4+6x2+9x3)3x+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^5-6*x^3-6*x^2-27*x-27)*exp((x^4+6*x^2+9)/x^3)+3*x^4)/(x^6+2*x^5+x^4),x, algorithm="giac")

[Out]

(e^((x^4 + 6*x^2 + 9)/x^3) - 3)/(x + 1)

________________________________________________________________________________________

maple [A]  time = 0.18, size = 27, normalized size = 1.23




method result size



risch 3x+1+e(x2+3)2x3x+1 27
norman 3x3+ex4+6x2+9x3x3x3(x+1) 35



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^5-6*x^3-6*x^2-27*x-27)*exp((x^4+6*x^2+9)/x^3)+3*x^4)/(x^6+2*x^5+x^4),x,method=_RETURNVERBOSE)

[Out]

-3/(x+1)+1/(x+1)*exp((x^2+3)^2/x^3)

________________________________________________________________________________________

maxima [A]  time = 0.58, size = 27, normalized size = 1.23 e(x+6x+9x3)x+13x+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^5-6*x^3-6*x^2-27*x-27)*exp((x^4+6*x^2+9)/x^3)+3*x^4)/(x^6+2*x^5+x^4),x, algorithm="maxima")

[Out]

e^(x + 6/x + 9/x^3)/(x + 1) - 3/(x + 1)

________________________________________________________________________________________

mupad [B]  time = 1.96, size = 25, normalized size = 1.14 3x+e6/xe9x3exx+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp((6*x^2 + x^4 + 9)/x^3)*(27*x + 6*x^2 + 6*x^3 - x^5 + 27) - 3*x^4)/(x^4 + 2*x^5 + x^6),x)

[Out]

(3*x + exp(6/x)*exp(9/x^3)*exp(x))/(x + 1)

________________________________________________________________________________________

sympy [A]  time = 0.17, size = 22, normalized size = 1.00 ex4+6x2+9x3x+13x+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x**5-6*x**3-6*x**2-27*x-27)*exp((x**4+6*x**2+9)/x**3)+3*x**4)/(x**6+2*x**5+x**4),x)

[Out]

exp((x**4 + 6*x**2 + 9)/x**3)/(x + 1) - 3/(x + 1)

________________________________________________________________________________________