3.33.53 124log(x)+(3+log(x))x(4+(124log(x))log(3+log(x)))3+3x+(1+x)log(x)+(3+log(x))1+xdx

Optimal. Leaf size=14 log(16(1+x+(3+log(x))x)4)

________________________________________________________________________________________

Rubi [F]  time = 2.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 124log(x)+(3+log(x))x(4+(124log(x))log(3+log(x)))3+3x+(1+x)log(x)+(3+log(x))1+xdx

Verification is not applicable to the result.

[In]

Int[(-12 - 4*Log[x] + (3 + Log[x])^x*(-4 + (-12 - 4*Log[x])*Log[3 + Log[x]]))/(3 + 3*x + (1 + x)*Log[x] + (3 +
 Log[x])^(1 + x)),x]

[Out]

(-4*ExpIntegralEi[3 + Log[x]])/E^3 - 8*Defer[Int][1/((3 + Log[x])*(1 + x + (3 + Log[x])^x)), x] + 4*Defer[Int]
[x/((3 + Log[x])*(1 + x + (3 + Log[x])^x)), x] - 4*Defer[Int][Log[x]/((3 + Log[x])*(1 + x + (3 + Log[x])^x)),
x] - 4*Defer[Int][Log[3 + Log[x]], x] + 12*Defer[Int][Log[3 + Log[x]]/((3 + Log[x])*(1 + x + (3 + Log[x])^x)),
 x] + 12*Defer[Int][(x*Log[3 + Log[x]])/((3 + Log[x])*(1 + x + (3 + Log[x])^x)), x] + 4*Defer[Int][(Log[x]*Log
[3 + Log[x]])/((3 + Log[x])*(1 + x + (3 + Log[x])^x)), x] + 4*Defer[Int][(x*Log[x]*Log[3 + Log[x]])/((3 + Log[
x])*(1 + x + (3 + Log[x])^x)), x]

Rubi steps

integral=124log(x)+(3+log(x))x(4+(124log(x))log(3+log(x)))(3+log(x))(1+x+(3+log(x))x)dx=(4(1+3log(3+log(x))+log(x)log(3+log(x)))3+log(x)+4(2+xlog(x)+3log(3+log(x))+3xlog(3+log(x))+log(x)log(3+log(x))+xlog(x)log(3+log(x)))(3+log(x))(1+x+(3+log(x))x))dx=(41+3log(3+log(x))+log(x)log(3+log(x))3+log(x)dx)+42+xlog(x)+3log(3+log(x))+3xlog(3+log(x))+log(x)log(3+log(x))+xlog(x)log(3+log(x))(3+log(x))(1+x+(3+log(x))x)dx=(4(13+log(x)+log(3+log(x)))dx)+42+x+3(1+x)log(3+log(x))+log(x)(1+(1+x)log(3+log(x)))(3+log(x))(1+x+(3+log(x))x)dx=(413+log(x)dx)4log(3+log(x))dx+4(2(3+log(x))(1+x+(3+log(x))x)+x(3+log(x))(1+x+(3+log(x))x)log(x)(3+log(x))(1+x+(3+log(x))x)+3log(3+log(x))(3+log(x))(1+x+(3+log(x))x)+3xlog(3+log(x))(3+log(x))(1+x+(3+log(x))x)+log(x)log(3+log(x))(3+log(x))(1+x+(3+log(x))x)+xlog(x)log(3+log(x))(3+log(x))(1+x+(3+log(x))x))dx=4x(3+log(x))(1+x+(3+log(x))x)dx4log(x)(3+log(x))(1+x+(3+log(x))x)dx4log(3+log(x))dx+4log(x)log(3+log(x))(3+log(x))(1+x+(3+log(x))x)dx+4xlog(x)log(3+log(x))(3+log(x))(1+x+(3+log(x))x)dx4Subst(ex3+xdx,x,log(x))81(3+log(x))(1+x+(3+log(x))x)dx+12log(3+log(x))(3+log(x))(1+x+(3+log(x))x)dx+12xlog(3+log(x))(3+log(x))(1+x+(3+log(x))x)dx=4Ei(3+log(x))e3+4x(3+log(x))(1+x+(3+log(x))x)dx4log(x)(3+log(x))(1+x+(3+log(x))x)dx4log(3+log(x))dx+4log(x)log(3+log(x))(3+log(x))(1+x+(3+log(x))x)dx+4xlog(x)log(3+log(x))(3+log(x))(1+x+(3+log(x))x)dx81(3+log(x))(1+x+(3+log(x))x)dx+12log(3+log(x))(3+log(x))(1+x+(3+log(x))x)dx+12xlog(3+log(x))(3+log(x))(1+x+(3+log(x))x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.37, size = 12, normalized size = 0.86 4log(1+x+(3+log(x))x)

Antiderivative was successfully verified.

[In]

Integrate[(-12 - 4*Log[x] + (3 + Log[x])^x*(-4 + (-12 - 4*Log[x])*Log[3 + Log[x]]))/(3 + 3*x + (1 + x)*Log[x]
+ (3 + Log[x])^(1 + x)),x]

[Out]

-4*Log[1 + x + (3 + Log[x])^x]

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 12, normalized size = 0.86 4log(x+(log(x)+3)x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*log(x)-12)*log(3+log(x))-4)*exp(x*log(3+log(x)))-4*log(x)-12)/((3+log(x))*exp(x*log(3+log(x)))
+log(x)*(x+1)+3*x+3),x, algorithm="fricas")

[Out]

-4*log(x + (log(x) + 3)^x + 1)

________________________________________________________________________________________

giac [B]  time = 1.45, size = 67, normalized size = 4.79 4xe3log(x)log(log(x)+3)e3log(x)+3e3+4xlog(log(x)+3)12xe3log(log(x)+3)e3log(x)+3e34log(x+(log(x)+3)x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*log(x)-12)*log(3+log(x))-4)*exp(x*log(3+log(x)))-4*log(x)-12)/((3+log(x))*exp(x*log(3+log(x)))
+log(x)*(x+1)+3*x+3),x, algorithm="giac")

[Out]

-4*x*e^3*log(x)*log(log(x) + 3)/(e^3*log(x) + 3*e^3) + 4*x*log(log(x) + 3) - 12*x*e^3*log(log(x) + 3)/(e^3*log
(x) + 3*e^3) - 4*log(x + (log(x) + 3)^x + 1)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 13, normalized size = 0.93




method result size



risch 4ln((3+ln(x))x+x+1) 13



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-4*ln(x)-12)*ln(3+ln(x))-4)*exp(x*ln(3+ln(x)))-4*ln(x)-12)/((3+ln(x))*exp(x*ln(3+ln(x)))+ln(x)*(x+1)+3*
x+3),x,method=_RETURNVERBOSE)

[Out]

-4*ln((3+ln(x))^x+x+1)

________________________________________________________________________________________

maxima [A]  time = 0.46, size = 12, normalized size = 0.86 4log(x+(log(x)+3)x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*log(x)-12)*log(3+log(x))-4)*exp(x*log(3+log(x)))-4*log(x)-12)/((3+log(x))*exp(x*log(3+log(x)))
+log(x)*(x+1)+3*x+3),x, algorithm="maxima")

[Out]

-4*log(x + (log(x) + 3)^x + 1)

________________________________________________________________________________________

mupad [B]  time = 2.15, size = 12, normalized size = 0.86 4ln(x+(ln(x)+3)x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*log(x) + exp(x*log(log(x) + 3))*(log(log(x) + 3)*(4*log(x) + 12) + 4) + 12)/(3*x + log(x)*(x + 1) + ex
p(x*log(log(x) + 3))*(log(x) + 3) + 3),x)

[Out]

-4*log(x + (log(x) + 3)^x + 1)

________________________________________________________________________________________

sympy [A]  time = 0.84, size = 17, normalized size = 1.21 4log(x+exlog(log(x)+3)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*ln(x)-12)*ln(3+ln(x))-4)*exp(x*ln(3+ln(x)))-4*ln(x)-12)/((3+ln(x))*exp(x*ln(3+ln(x)))+ln(x)*(x
+1)+3*x+3),x)

[Out]

-4*log(x + exp(x*log(log(x) + 3)) + 1)

________________________________________________________________________________________