3.33.63 e1+12x(448x)x216e2+24x+8e1+12xx2+x4dx

Optimal. Leaf size=16 14e1+12xx+x

________________________________________________________________________________________

Rubi [F]  time = 1.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e1+12x(448x)x216e2+24x+8e1+12xx2+x4dx

Verification is not applicable to the result.

[In]

Int[(E^(-1 + 12*x)*(4 - 48*x) - x^2)/(16*E^(-2 + 24*x) + 8*E^(-1 + 12*x)*x^2 + x^4),x]

[Out]

-2*E^2*Defer[Int][x^2/(4*E^(12*x) + E*x^2)^2, x] + 12*E^2*Defer[Int][x^3/(4*E^(12*x) + E*x^2)^2, x] + E*Defer[
Int][(4*E^(12*x) + E*x^2)^(-1), x] - 12*E*Defer[Int][x/(4*E^(12*x) + E*x^2), x]

Rubi steps

integral=e2(e1+12x(448x)x2)(4e12x+ex2)2dx=e2e1+12x(448x)x2(4e12x+ex2)2dx=e2(2x2(1+6x)(4e12x+ex2)21+12xe(4e12x+ex2))dx=(e1+12x4e12x+ex2dx)+(2e2)x2(1+6x)(4e12x+ex2)2dx=(e(14e12x+ex2+12x4e12x+ex2)dx)+(2e2)(x2(4e12x+ex2)2+6x3(4e12x+ex2)2)dx=e14e12x+ex2dx(12e)x4e12x+ex2dx(2e2)x2(4e12x+ex2)2dx+(12e2)x3(4e12x+ex2)2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 18, normalized size = 1.12 ex4e12x+ex2

Antiderivative was successfully verified.

[In]

Integrate[(E^(-1 + 12*x)*(4 - 48*x) - x^2)/(16*E^(-2 + 24*x) + 8*E^(-1 + 12*x)*x^2 + x^4),x]

[Out]

(E*x)/(4*E^(12*x) + E*x^2)

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 16, normalized size = 1.00 xx2+4e(12x1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-48*x+4)*exp(12*x-1)-x^2)/(16*exp(12*x-1)^2+8*x^2*exp(12*x-1)+x^4),x, algorithm="fricas")

[Out]

x/(x^2 + 4*e^(12*x - 1))

________________________________________________________________________________________

giac [A]  time = 0.21, size = 19, normalized size = 1.19 xex2e+4e(12x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-48*x+4)*exp(12*x-1)-x^2)/(16*exp(12*x-1)^2+8*x^2*exp(12*x-1)+x^4),x, algorithm="giac")

[Out]

x*e/(x^2*e + 4*e^(12*x))

________________________________________________________________________________________

maple [A]  time = 0.08, size = 17, normalized size = 1.06




method result size



norman xx2+4e12x1 17
risch xx2+4e12x1 17



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-48*x+4)*exp(12*x-1)-x^2)/(16*exp(12*x-1)^2+8*x^2*exp(12*x-1)+x^4),x,method=_RETURNVERBOSE)

[Out]

x/(x^2+4*exp(12*x-1))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 19, normalized size = 1.19 xex2e+4e(12x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-48*x+4)*exp(12*x-1)-x^2)/(16*exp(12*x-1)^2+8*x^2*exp(12*x-1)+x^4),x, algorithm="maxima")

[Out]

x*e/(x^2*e + 4*e^(12*x))

________________________________________________________________________________________

mupad [B]  time = 0.10, size = 16, normalized size = 1.00 x4e12x1+x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(12*x - 1)*(48*x - 4) + x^2)/(16*exp(24*x - 2) + 8*x^2*exp(12*x - 1) + x^4),x)

[Out]

x/(4*exp(12*x - 1) + x^2)

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 12, normalized size = 0.75 xx2+4e12x1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-48*x+4)*exp(12*x-1)-x**2)/(16*exp(12*x-1)**2+8*x**2*exp(12*x-1)+x**4),x)

[Out]

x/(x**2 + 4*exp(12*x - 1))

________________________________________________________________________________________