3.33.71 e2x4eexx(1+e2x+4eexx2x+eex(4x4exx2))dx

Optimal. Leaf size=18 x+e2x4eexxx

________________________________________________________________________________________

Rubi [F]  time = 2.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e2x4eexx(1+e2x+4eexx2x+eex(4x4exx2))dx

Verification is not applicable to the result.

[In]

Int[E^(-2*x - 4*E^E^x*x)*(1 + E^(2*x + 4*E^E^x*x) - 2*x + E^E^x*(-4*x - 4*E^x*x^2)),x]

[Out]

x + Defer[Int][E^(-2*(1 + 2*E^E^x)*x), x] - 2*Defer[Int][x/E^(2*(1 + 2*E^E^x)*x), x] - 4*Defer[Int][E^(E^x - 2
*(1 + 2*E^E^x)*x)*x, x] - 4*Defer[Int][E^(E^x + x - 2*(1 + 2*E^E^x)*x)*x^2, x]

Rubi steps

integral=e2(1+2eex)x(1+e2x+4eexx2x+eex(4x4exx2))dx=(1+e2(1+2eex)x2e2(1+2eex)xx4eex2(1+2eex)xx(1+exx))dx=x2e2(1+2eex)xxdx4eex2(1+2eex)xx(1+exx)dx+e2(1+2eex)xdx=x2e2(1+2eex)xxdx4(eex2(1+2eex)xx+eex+x2(1+2eex)xx2)dx+e2(1+2eex)xdx=x2e2(1+2eex)xxdx4eex2(1+2eex)xxdx4eex+x2(1+2eex)xx2dx+e2(1+2eex)xdx

________________________________________________________________________________________

Mathematica [A]  time = 0.65, size = 18, normalized size = 1.00 x+e2x4eexxx

Antiderivative was successfully verified.

[In]

Integrate[E^(-2*x - 4*E^E^x*x)*(1 + E^(2*x + 4*E^E^x*x) - 2*x + E^E^x*(-4*x - 4*E^x*x^2)),x]

[Out]

x + E^(-2*x - 4*E^E^x*x)*x

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 27, normalized size = 1.50 (xe(4xe(ex)+2x)+x)e(4xe(ex)2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(2*x*exp(exp(x))+x)^2+(-4*exp(x)*x^2-4*x)*exp(exp(x))+1-2*x)/exp(2*x*exp(exp(x))+x)^2,x, algorit
hm="fricas")

[Out]

(x*e^(4*x*e^(e^x) + 2*x) + x)*e^(-4*x*e^(e^x) - 2*x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 (4(x2ex+x)e(ex)+2xe(4xe(ex)+2x)1)e(4xe(ex)2x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(2*x*exp(exp(x))+x)^2+(-4*exp(x)*x^2-4*x)*exp(exp(x))+1-2*x)/exp(2*x*exp(exp(x))+x)^2,x, algorit
hm="giac")

[Out]

integrate(-(4*(x^2*e^x + x)*e^(e^x) + 2*x - e^(4*x*e^(e^x) + 2*x) - 1)*e^(-4*x*e^(e^x) - 2*x), x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 16, normalized size = 0.89




method result size



risch x+xe2x(2eex+1) 16



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(2*x*exp(exp(x))+x)^2+(-4*exp(x)*x^2-4*x)*exp(exp(x))+1-2*x)/exp(2*x*exp(exp(x))+x)^2,x,method=_RETURN
VERBOSE)

[Out]

x+x*exp(-2*x*(2*exp(exp(x))+1))

________________________________________________________________________________________

maxima [A]  time = 0.51, size = 15, normalized size = 0.83 xe(4xe(ex)2x)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(2*x*exp(exp(x))+x)^2+(-4*exp(x)*x^2-4*x)*exp(exp(x))+1-2*x)/exp(2*x*exp(exp(x))+x)^2,x, algorit
hm="maxima")

[Out]

x*e^(-4*x*e^(e^x) - 2*x) + x

________________________________________________________________________________________

mupad [B]  time = 2.09, size = 15, normalized size = 0.83 x+xe2xe4xeex

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(- 2*x - 4*x*exp(exp(x)))*(2*x - exp(2*x + 4*x*exp(exp(x))) + exp(exp(x))*(4*x + 4*x^2*exp(x)) - 1),x)

[Out]

x + x*exp(-2*x)*exp(-4*x*exp(exp(x)))

________________________________________________________________________________________

sympy [A]  time = 4.09, size = 17, normalized size = 0.94 xe4xeex2x+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(2*x*exp(exp(x))+x)**2+(-4*exp(x)*x**2-4*x)*exp(exp(x))+1-2*x)/exp(2*x*exp(exp(x))+x)**2,x)

[Out]

x*exp(-4*x*exp(exp(x)) - 2*x) + x

________________________________________________________________________________________