3.33.77
Optimal. Leaf size=32
________________________________________________________________________________________
Rubi [F] time = 1.36, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-140 + 88*x^2 - 16*x^3 - 12*x^4 + (-40*x + 8*x^3)*Log[E^(7/x)*(25 - 10*x^2 + x^4)])/(-45*x^2 - 30*x^3 + 4
*x^4 + 6*x^5 + x^6 + (30*x + 10*x^2 - 6*x^3 - 2*x^4)*Log[E^(7/x)*(25 - 10*x^2 + x^4)] + (-5 + x^2)*Log[E^(7/x)
*(25 - 10*x^2 + x^4)]^2),x]
[Out]
28*Defer[Int][(3*x + x^2 - Log[E^(7/x)*(-5 + x^2)^2])^(-2), x] + 40*Defer[Int][1/((Sqrt[5] - x)*(3*x + x^2 - L
og[E^(7/x)*(-5 + x^2)^2])^2), x] - 16*Defer[Int][x/(3*x + x^2 - Log[E^(7/x)*(-5 + x^2)^2])^2, x] + 12*Defer[In
t][x^2/(3*x + x^2 - Log[E^(7/x)*(-5 + x^2)^2])^2, x] + 8*Defer[Int][x^3/(3*x + x^2 - Log[E^(7/x)*(-5 + x^2)^2]
)^2, x] - 40*Defer[Int][1/((Sqrt[5] + x)*(3*x + x^2 - Log[E^(7/x)*(-5 + x^2)^2])^2), x] - 8*Defer[Int][x/(3*x
+ x^2 - Log[E^(7/x)*(-5 + x^2)^2]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 1.02, size = 31, normalized size = 0.97
Antiderivative was successfully verified.
[In]
Integrate[(-140 + 88*x^2 - 16*x^3 - 12*x^4 + (-40*x + 8*x^3)*Log[E^(7/x)*(25 - 10*x^2 + x^4)])/(-45*x^2 - 30*x
^3 + 4*x^4 + 6*x^5 + x^6 + (30*x + 10*x^2 - 6*x^3 - 2*x^4)*Log[E^(7/x)*(25 - 10*x^2 + x^4)] + (-5 + x^2)*Log[E
^(7/x)*(25 - 10*x^2 + x^4)]^2),x]
[Out]
(-4*x^2)/(x*(3 + x) - Log[E^(7/x)*(-5 + x^2)^2])
________________________________________________________________________________________
fricas [A] time = 0.58, size = 34, normalized size = 1.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*x^3-40*x)*log((x^4-10*x^2+25)*exp(7/x))-12*x^4-16*x^3+88*x^2-140)/((x^2-5)*log((x^4-10*x^2+25)*e
xp(7/x))^2+(-2*x^4-6*x^3+10*x^2+30*x)*log((x^4-10*x^2+25)*exp(7/x))+x^6+6*x^5+4*x^4-30*x^3-45*x^2),x, algorith
m="fricas")
[Out]
-4*x^2/(x^2 + 3*x - log((x^4 - 10*x^2 + 25)*e^(7/x)))
________________________________________________________________________________________
giac [A] time = 0.76, size = 31, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*x^3-40*x)*log((x^4-10*x^2+25)*exp(7/x))-12*x^4-16*x^3+88*x^2-140)/((x^2-5)*log((x^4-10*x^2+25)*e
xp(7/x))^2+(-2*x^4-6*x^3+10*x^2+30*x)*log((x^4-10*x^2+25)*exp(7/x))+x^6+6*x^5+4*x^4-30*x^3-45*x^2),x, algorith
m="giac")
[Out]
-4*x^3/(x^3 + 3*x^2 - x*log(x^4 - 10*x^2 + 25) - 7)
________________________________________________________________________________________
maple [C] time = 0.14, size = 235, normalized size = 7.34
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((8*x^3-40*x)*ln((x^4-10*x^2+25)*exp(7/x))-12*x^4-16*x^3+88*x^2-140)/((x^2-5)*ln((x^4-10*x^2+25)*exp(7/x))
^2+(-2*x^4-6*x^3+10*x^2+30*x)*ln((x^4-10*x^2+25)*exp(7/x))+x^6+6*x^5+4*x^4-30*x^3-45*x^2),x,method=_RETURNVERB
OSE)
[Out]
-8*x^2/(I*Pi*csgn(I*(x^2-5))^2*csgn(I*(x^2-5)^2)-2*I*Pi*csgn(I*(x^2-5))*csgn(I*(x^2-5)^2)^2+I*Pi*csgn(I*(x^2-5
)^2)^3+I*Pi*csgn(I*(x^2-5)^2)*csgn(I*exp(7/x))*csgn(I*exp(7/x)*(x^2-5)^2)-I*Pi*csgn(I*(x^2-5)^2)*csgn(I*exp(7/
x)*(x^2-5)^2)^2-I*Pi*csgn(I*exp(7/x))*csgn(I*exp(7/x)*(x^2-5)^2)^2+I*Pi*csgn(I*exp(7/x)*(x^2-5)^2)^3+2*x^2+6*x
-4*ln(x^2-5)-2*ln(exp(7/x)))
________________________________________________________________________________________
maxima [A] time = 0.94, size = 26, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*x^3-40*x)*log((x^4-10*x^2+25)*exp(7/x))-12*x^4-16*x^3+88*x^2-140)/((x^2-5)*log((x^4-10*x^2+25)*e
xp(7/x))^2+(-2*x^4-6*x^3+10*x^2+30*x)*log((x^4-10*x^2+25)*exp(7/x))+x^6+6*x^5+4*x^4-30*x^3-45*x^2),x, algorith
m="maxima")
[Out]
-4*x^3/(x^3 + 3*x^2 - 2*x*log(x^2 - 5) - 7)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(exp(7/x)*(x^4 - 10*x^2 + 25))*(40*x - 8*x^3) - 88*x^2 + 16*x^3 + 12*x^4 + 140)/(log(exp(7/x)*(x^4 -
10*x^2 + 25))*(30*x + 10*x^2 - 6*x^3 - 2*x^4) + log(exp(7/x)*(x^4 - 10*x^2 + 25))^2*(x^2 - 5) - 45*x^2 - 30*x^
3 + 4*x^4 + 6*x^5 + x^6),x)
[Out]
int(-(log(exp(7/x)*(x^4 - 10*x^2 + 25))*(40*x - 8*x^3) - 88*x^2 + 16*x^3 + 12*x^4 + 140)/(log(exp(7/x)*(x^4 -
10*x^2 + 25))*(30*x + 10*x^2 - 6*x^3 - 2*x^4) + log(exp(7/x)*(x^4 - 10*x^2 + 25))^2*(x^2 - 5) - 45*x^2 - 30*x^
3 + 4*x^4 + 6*x^5 + x^6), x)
________________________________________________________________________________________
sympy [A] time = 0.46, size = 27, normalized size = 0.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*x**3-40*x)*ln((x**4-10*x**2+25)*exp(7/x))-12*x**4-16*x**3+88*x**2-140)/((x**2-5)*ln((x**4-10*x**
2+25)*exp(7/x))**2+(-2*x**4-6*x**3+10*x**2+30*x)*ln((x**4-10*x**2+25)*exp(7/x))+x**6+6*x**5+4*x**4-30*x**3-45*
x**2),x)
[Out]
4*x**2/(-x**2 - 3*x + log((x**4 - 10*x**2 + 25)*exp(7/x)))
________________________________________________________________________________________