3.33.77 140+88x216x312x4+(40x+8x3)log(e7/x(2510x2+x4))45x230x3+4x4+6x5+x6+(30x+10x26x32x4)log(e7/x(2510x2+x4))+(5+x2)log2(e7/x(2510x2+x4))dx

Optimal. Leaf size=32 4x2x(3+x)+log(e7/x(5x2)2)

________________________________________________________________________________________

Rubi [F]  time = 1.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 140+88x216x312x4+(40x+8x3)log(e7/x(2510x2+x4))45x230x3+4x4+6x5+x6+(30x+10x26x32x4)log(e7/x(2510x2+x4))+(5+x2)log2(e7/x(2510x2+x4))dx

Verification is not applicable to the result.

[In]

Int[(-140 + 88*x^2 - 16*x^3 - 12*x^4 + (-40*x + 8*x^3)*Log[E^(7/x)*(25 - 10*x^2 + x^4)])/(-45*x^2 - 30*x^3 + 4
*x^4 + 6*x^5 + x^6 + (30*x + 10*x^2 - 6*x^3 - 2*x^4)*Log[E^(7/x)*(25 - 10*x^2 + x^4)] + (-5 + x^2)*Log[E^(7/x)
*(25 - 10*x^2 + x^4)]^2),x]

[Out]

28*Defer[Int][(3*x + x^2 - Log[E^(7/x)*(-5 + x^2)^2])^(-2), x] + 40*Defer[Int][1/((Sqrt[5] - x)*(3*x + x^2 - L
og[E^(7/x)*(-5 + x^2)^2])^2), x] - 16*Defer[Int][x/(3*x + x^2 - Log[E^(7/x)*(-5 + x^2)^2])^2, x] + 12*Defer[In
t][x^2/(3*x + x^2 - Log[E^(7/x)*(-5 + x^2)^2])^2, x] + 8*Defer[Int][x^3/(3*x + x^2 - Log[E^(7/x)*(-5 + x^2)^2]
)^2, x] - 40*Defer[Int][1/((Sqrt[5] + x)*(3*x + x^2 - Log[E^(7/x)*(-5 + x^2)^2])^2), x] - 8*Defer[Int][x/(3*x
+ x^2 - Log[E^(7/x)*(-5 + x^2)^2]), x]

Rubi steps

integral=4(3522x2+4x3+3x42x(5+x2)log(e7/x(5+x2)2))(5x2)(x(3+x)log(e7/x(5+x2)2))2dx=43522x2+4x3+3x42x(5+x2)log(e7/x(5+x2)2)(5x2)(x(3+x)log(e7/x(5+x2)2))2dx=4(358x214x3+3x4+2x5(5+x2)(3x+x2log(e7/x(5+x2)2))22x3x+x2log(e7/x(5+x2)2))dx=4358x214x3+3x4+2x5(5+x2)(3x+x2log(e7/x(5+x2)2))2dx8x3x+x2log(e7/x(5+x2)2)dx=4(7(3x+x2log(e7/x(5+x2)2))24x(3x+x2log(e7/x(5+x2)2))2+3x2(3x+x2log(e7/x(5+x2)2))2+2x3(3x+x2log(e7/x(5+x2)2))220x(5+x2)(3x+x2log(e7/x(5+x2)2))2)dx8x3x+x2log(e7/x(5+x2)2)dx=8x3(3x+x2log(e7/x(5+x2)2))2dx8x3x+x2log(e7/x(5+x2)2)dx+12x2(3x+x2log(e7/x(5+x2)2))2dx16x(3x+x2log(e7/x(5+x2)2))2dx+281(3x+x2log(e7/x(5+x2)2))2dx80x(5+x2)(3x+x2log(e7/x(5+x2)2))2dx=8x3(3x+x2log(e7/x(5+x2)2))2dx8x3x+x2log(e7/x(5+x2)2)dx+12x2(3x+x2log(e7/x(5+x2)2))2dx16x(3x+x2log(e7/x(5+x2)2))2dx+281(3x+x2log(e7/x(5+x2)2))2dx80(12(5x)(3x+x2log(e7/x(5+x2)2))2+12(5+x)(3x+x2log(e7/x(5+x2)2))2)dx=8x3(3x+x2log(e7/x(5+x2)2))2dx8x3x+x2log(e7/x(5+x2)2)dx+12x2(3x+x2log(e7/x(5+x2)2))2dx16x(3x+x2log(e7/x(5+x2)2))2dx+281(3x+x2log(e7/x(5+x2)2))2dx+401(5x)(3x+x2log(e7/x(5+x2)2))2dx401(5+x)(3x+x2log(e7/x(5+x2)2))2dx

________________________________________________________________________________________

Mathematica [A]  time = 1.02, size = 31, normalized size = 0.97 4x2x(3+x)log(e7/x(5+x2)2)

Antiderivative was successfully verified.

[In]

Integrate[(-140 + 88*x^2 - 16*x^3 - 12*x^4 + (-40*x + 8*x^3)*Log[E^(7/x)*(25 - 10*x^2 + x^4)])/(-45*x^2 - 30*x
^3 + 4*x^4 + 6*x^5 + x^6 + (30*x + 10*x^2 - 6*x^3 - 2*x^4)*Log[E^(7/x)*(25 - 10*x^2 + x^4)] + (-5 + x^2)*Log[E
^(7/x)*(25 - 10*x^2 + x^4)]^2),x]

[Out]

(-4*x^2)/(x*(3 + x) - Log[E^(7/x)*(-5 + x^2)^2])

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 34, normalized size = 1.06 4x2x2+3xlog((x410x2+25)e7x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x^3-40*x)*log((x^4-10*x^2+25)*exp(7/x))-12*x^4-16*x^3+88*x^2-140)/((x^2-5)*log((x^4-10*x^2+25)*e
xp(7/x))^2+(-2*x^4-6*x^3+10*x^2+30*x)*log((x^4-10*x^2+25)*exp(7/x))+x^6+6*x^5+4*x^4-30*x^3-45*x^2),x, algorith
m="fricas")

[Out]

-4*x^2/(x^2 + 3*x - log((x^4 - 10*x^2 + 25)*e^(7/x)))

________________________________________________________________________________________

giac [A]  time = 0.76, size = 31, normalized size = 0.97 4x3x3+3x2xlog(x410x2+25)7

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x^3-40*x)*log((x^4-10*x^2+25)*exp(7/x))-12*x^4-16*x^3+88*x^2-140)/((x^2-5)*log((x^4-10*x^2+25)*e
xp(7/x))^2+(-2*x^4-6*x^3+10*x^2+30*x)*log((x^4-10*x^2+25)*exp(7/x))+x^6+6*x^5+4*x^4-30*x^3-45*x^2),x, algorith
m="giac")

[Out]

-4*x^3/(x^3 + 3*x^2 - x*log(x^4 - 10*x^2 + 25) - 7)

________________________________________________________________________________________

maple [C]  time = 0.14, size = 235, normalized size = 7.34




method result size



risch 8x2iπcsgn(i(x25))2csgn(i(x25)2)2iπcsgn(i(x25))csgn(i(x25)2)2+iπcsgn(i(x25)2)3+iπcsgn(i(x25)2)csgn(ie7x)csgn(ie7x(x25)2)iπcsgn(i(x25)2)csgn(ie7x(x25)2)2iπcsgn(ie7x)csgn(ie7x(x25)2)2+iπcsgn(ie7x(x25)2)3+2x2+6x4ln(x25)2ln(e7x) 235



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((8*x^3-40*x)*ln((x^4-10*x^2+25)*exp(7/x))-12*x^4-16*x^3+88*x^2-140)/((x^2-5)*ln((x^4-10*x^2+25)*exp(7/x))
^2+(-2*x^4-6*x^3+10*x^2+30*x)*ln((x^4-10*x^2+25)*exp(7/x))+x^6+6*x^5+4*x^4-30*x^3-45*x^2),x,method=_RETURNVERB
OSE)

[Out]

-8*x^2/(I*Pi*csgn(I*(x^2-5))^2*csgn(I*(x^2-5)^2)-2*I*Pi*csgn(I*(x^2-5))*csgn(I*(x^2-5)^2)^2+I*Pi*csgn(I*(x^2-5
)^2)^3+I*Pi*csgn(I*(x^2-5)^2)*csgn(I*exp(7/x))*csgn(I*exp(7/x)*(x^2-5)^2)-I*Pi*csgn(I*(x^2-5)^2)*csgn(I*exp(7/
x)*(x^2-5)^2)^2-I*Pi*csgn(I*exp(7/x))*csgn(I*exp(7/x)*(x^2-5)^2)^2+I*Pi*csgn(I*exp(7/x)*(x^2-5)^2)^3+2*x^2+6*x
-4*ln(x^2-5)-2*ln(exp(7/x)))

________________________________________________________________________________________

maxima [A]  time = 0.94, size = 26, normalized size = 0.81 4x3x3+3x22xlog(x25)7

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x^3-40*x)*log((x^4-10*x^2+25)*exp(7/x))-12*x^4-16*x^3+88*x^2-140)/((x^2-5)*log((x^4-10*x^2+25)*e
xp(7/x))^2+(-2*x^4-6*x^3+10*x^2+30*x)*log((x^4-10*x^2+25)*exp(7/x))+x^6+6*x^5+4*x^4-30*x^3-45*x^2),x, algorith
m="maxima")

[Out]

-4*x^3/(x^3 + 3*x^2 - 2*x*log(x^2 - 5) - 7)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 ln(e7/x(x410x2+25))(40x8x3)88x2+16x3+12x4+140ln(e7/x(x410x2+25))(2x46x3+10x2+30x)+ln(e7/x(x410x2+25))2(x25)45x230x3+4x4+6x5+x6dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(exp(7/x)*(x^4 - 10*x^2 + 25))*(40*x - 8*x^3) - 88*x^2 + 16*x^3 + 12*x^4 + 140)/(log(exp(7/x)*(x^4 -
10*x^2 + 25))*(30*x + 10*x^2 - 6*x^3 - 2*x^4) + log(exp(7/x)*(x^4 - 10*x^2 + 25))^2*(x^2 - 5) - 45*x^2 - 30*x^
3 + 4*x^4 + 6*x^5 + x^6),x)

[Out]

int(-(log(exp(7/x)*(x^4 - 10*x^2 + 25))*(40*x - 8*x^3) - 88*x^2 + 16*x^3 + 12*x^4 + 140)/(log(exp(7/x)*(x^4 -
10*x^2 + 25))*(30*x + 10*x^2 - 6*x^3 - 2*x^4) + log(exp(7/x)*(x^4 - 10*x^2 + 25))^2*(x^2 - 5) - 45*x^2 - 30*x^
3 + 4*x^4 + 6*x^5 + x^6), x)

________________________________________________________________________________________

sympy [A]  time = 0.46, size = 27, normalized size = 0.84 4x2x23x+log((x410x2+25)e7x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x**3-40*x)*ln((x**4-10*x**2+25)*exp(7/x))-12*x**4-16*x**3+88*x**2-140)/((x**2-5)*ln((x**4-10*x**
2+25)*exp(7/x))**2+(-2*x**4-6*x**3+10*x**2+30*x)*ln((x**4-10*x**2+25)*exp(7/x))+x**6+6*x**5+4*x**4-30*x**3-45*
x**2),x)

[Out]

4*x**2/(-x**2 - 3*x + log((x**4 - 10*x**2 + 25)*exp(7/x)))

________________________________________________________________________________________